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Preface
The 22nd International Conference on Computational Statistics, COMPSTAT 2016, is held in Oviedo,
Spain, from August 23rd to August 26th 2016. It is locally organized by members of the University
of Oviedo assisted by active Spanish researchers. The COMPSTAT is an initiative of the European
Regional Section of the International Association for Statistical Computing (IASC-ERS), a society of
the International Statistical Institute (ISI). COMPSTAT is one of the best-known world conferences in
Computational Statistics, regularly attracting hundreds of researchers and practitioners.

The �rst COMPSTAT conference took place in Vienna in 1974, and the last two editions took place
in Limassol in 2012 and Geneve in 2014. It has gained a reputation as an ideal forum for presenting
top quality theoretical and applied work, promoting interdisciplinary research and establishing contacts
amongst researchers with common interests.

Keynote lectures are addressed by Prof. Gerard Biau, Universit Pierre et Marie Curie, Paris, France,
Prof. Alastair Young, Imperial College, London, UK and Prof. Hans-Georg Mueller, University of
California Davis, United States.

From more than 450 submissions received for COMPSTAT, 360 have been retained for presentation
in the conference. The conference programme has 41 contributed sessions, 8 invited sessions, 3 keynote
talks, 30 organized sessions and 3 tutorials. There are approximately 430 participants.

The Proceedings are published in an electronic book comprising 34 papers. The participants can
�nd an electronic copy in a USB stick placed in their conference bags or download it at the conference
web page. All the papers submitted have been evaluated through a rigorous peer review process. Those
papers that have been accepted for publication in the Proceedings have been evaluated thoroughly by
at least 2 referees. This ensures a high quality proceedings volume in the main areas of computational
statistics.

The organization would like to thank the editors, authors, referees and all participants of COMPSTAT
2016 who contributed to the success of the conference. Our gratitude to sponsors, scienti�c programme
committee, session organizers, local universities, the city of Oviedo, and many volunteers who have
contributed substantially to the conference. We acknowledge their work and support.

The COMPSTAT 2016 organizers invite you to the next edition of the COMPSTAT, which will take
place in Iasi, Romania in 2018. We wish the best success to Cristian Gatu the Chairman of the 23rd
edition of COMPSTAT.

Ana Colubi
Organiser and Chairperson of the SPC.
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ProbitSpatial R package: fast and
accurate spatial probit estimations
Davide Martinetti, INRA Avignon, France , davide.martinetti@paca.inra.fr
Ghislain Geniaux, INRA Avignon, France , ghislain.geniaux@avignon.inra.fr

Abstract. This package meets the emerging needs of powerful and reliable models for the analysis of
spatial discrete choice data. Since the explosion of available and voluminous geospatial and location
data, older estimation techniques cannot withstand the course of dimensionality and are restricted to
samples with less than a few thousand observations. The functions contained in ProbitSpatial allow fast
and accurate estimations of Spatial Autoregressive and Spatial Error Models under Probit speci�cation.
They are based on the full maximization of likelihood of an approximate multivariate normal distribution
function, a task that was considered as prodigious just few years ago. Extensive simulation and empirical
studies proved that these functions can readily handle sample sizes with as many as several millions of
observations, provided the spatial weight matrix is in convenient sparse form, as is typically the case of
large data sets, where each observation neighbours only a few other observations. SpatialProbit relies
amongst others on Rcpp, RcppEigen and Matrix packages to produce fast computations for large sparse
matrixes. Possible applications of spatial binary choice models include spread of diseases and pathogens,
plants distribution, technology and innovation adoption, deforestation, land use change, amongst many
others.

Keywords. Spatial Statistics, Probit, Discrete Choice model, R package

1 Introduction

ProbitSpatial library [ 24] contains a set of tools for estimating and testing di�erent types of spatial
probit models. Those models belong to the growing family of econometrics methods that deals with
observations showing some kind of spatial or network dependence. In particular, these choice models are
focused on data that have a binary dependent variable, such as the choice of adopting a new farming
technology [9], increasing tax rates in a district [5], reopening of a damaged infrastructure [23], location
of suppliers plants [20] or of R&D labs [3], tree harvesting choice [15], defoliation [17], deforestation [6]
or plants distribution [ 11] and land use changes [8, 28, 30, 39, 42].

In spatial models, the interdependence between observations not only is viewed as a violation of the
independence hypothesis, but also as an actual feature of the problem, and its presence and intensity
is of major interest, especially in spatial econometric and social network analysis. Despite there exists
an extensive literature on continuous-dependent-variable models with spatial dependence, began three
decades ago with the seminal paper of Anselin [2], the case of spatial regression models with binary or
multinomial dependent variables has received limited attention [34], mainly due to its complexity. A



2 ProbitSpatial R package

recent and comprehensive review by Calabrese et al. [7] collects and compares through a Monte-Carlo
experiment all signi�cant contributions in this �eld: the expectation-maximization (EM) algorithm by
McMillen [ 26], the Bayesian Gibbs sampler by LeSage [21], the recursive importance sampling (RIS)
algorithm by Beron and Vijverberg [5], the generalized method of moments (GMM) algorithm by Pinkse
and Slade [33] and its linearised (linearised GMM) version by Klier and McMillen [ 20]. Also, on the same
subject, the unpublished paper of Pace and LeSage [32] that uses Geweke-Hajivassiliou-Keene (GHK)
approximations of a multivariate normal probability with sparse variance-coavariance matrix (GHK and
RIS are basically the same) and the contribution by Diallo and Geniaux [13] on linearised GMM. From
this review, we observed that only RIS and Gibbs sampler estimators perform reasonably well in terms of
accuracy, but they are unfeasible for large samples (n � 1000). On the other hand, GMM-type estimators
scale well w.r.t. sample size, but their accuracy is really poor, especially when the value of the spatial
dependence parameter is high.

For spatial binary-dependent variables, the most used techniques are spatial logit [13, 20] and spatial
probit [ 5, 21, 26, 32, 33, 40] models. ProbitSpatial package contains functions for estimating probit
models, in which the disturbances of the regression model are supposed to follow a multivariate normal
(MVN) distribution and are based on the maximisation of the corresponding likelihood, a prodigious
task according to Wang et al. [38]. In contrast with the logit speci�cation, that assumes multivariate
logistic distribution of the error terms, the probit model is particularly attractive for the exibility of
the MVN covariance structure. Nevertheless, this exibility comes at a cost: there exists no closed form
expression for computing MVN probabilities, that are eventually expressed as a multiple integral. For
dealing with this problem, there exists several proposals than we can group into three main families:
numerical integration methods, simulation methods and analytical approximation methods. We propose
to use a MVN computation method that belongs to the last family and that improve the univariate
conditioning approximation method proposed by Mendell and Elston in [29], described by Kakamura in
[18] and recently reviewed by Connors et al. in [12]. We will show that this method allows to compute
the log-likelihood of a spatial probit model accurately and rapidly.

In Section 2 we will present two methods for spatial probit parameter estimations, with special
emphasis on the algorithmic implementation and the corresponding use in theProbitSpatial R library.
In Section 3 we will compare the two techniques on a set of simulated Monte Carlo experiments against
existing functions in R. We will focus then on the accuracy and estimation time of the di�erent methods.

2 ProbitSpatial library

Spatial binary-choice regression models are used to analyse sample data that are associated with speci�c
locations in space and that represent binary outcomes (usually actions or choices). We deal with spatial
regression models of the following form (the notations follow LeSage and Pace [22]):

y = �W y + X� + u ;

u = �M u + � ;

� � N (0; � 2I n ) ; (1)

where y represents ann � 1 vector of binary dependent variables,X an n � k matrix of independent
variables, I n is the identity matrix of size n and � (k � 1 vector), � and � (both scalars in [� 1; 1]) are
parameters to be estimated. The twon � n matrices W and M are known as spatial weight matrices
and contain the information on the spatial relationship between observations. Spatial weight matrices
are usually constructed as a function of the distance between observations or other contiguity measures
(shared borders, shared department, etc.). Typically wij = 1 (or mij = 1), if observations i and j
are contiguous, whilewij = 0 (or mij = 0) otherwise (it follows immediately that both W and M are
symmetric and by convention, the diagonal is set to be zero). It is common practice to row-standardise
the spatial weight matrices, i.e. wij =(

P
j wij ).

The model in Eq. (1) is often referred as spatial autoregressive model with spatial autoregressive
disturbances (or SARAR(1; 1)), when both the parameters � , a.k.a. spatial lag parameter, and� , a.k.a.
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Davide Martinetti and Ghislain Geniaux 3

spatial error parameter, are di�erent from zero. If � = 0, then we will speak of a spatial autoregressive
model (SAR, or SARAR(1; 0)) model, while if � = 0, we will speak of a spatial error model (SEM, or
SARAR(0; 1)). The SAR and SEM models are used to explain spatial dependences of di�erent nature1.
In this work we will focus in particular on spatial autoregressive and spatial error models. In particular,
since the disturbances� in Eq. (1) follow a multivariate normal distribution, then we are in the case of
a SAR probit or SEM probit speci�cation.

The SAR probit model can be reformulated from Eq. (1) as

y = ( I n � �W ) � 1(X� + � ) ; (2)

and hence the variance of the error termv = ( I n � �W ) � 1� can be written as

� = E(vv 0) = � 2(( I n � �W ) � 1(( I n � �W ) � 1)t ) : (3)

Consistent and e�cient estimates of the � and � parameters are obtained by maximising the corresponding
likelihood function, that takes the form of a multivariate normal (MVN) probability, namely an n-
dimensional integral, as follow:

L (�; � ) = � n (x 2 A j �) (4)

=
1

(2� )n= 2 j� j
1
2

Z

A 1

Z

A 2

: : :
Z

A n

e� ( 1
2 x t � � 1 x ) ;

where A = f A i gi 2f 1;:::;n g and

A i =

( �
(( I n � �W ) � 1X� ) i ; + 1

�
, if yi = 0 ;

�
�1 ; (( I n � �W ) � 1X� ) i

�
, if yi = 1 :

The SEM probit model can be reformulated from Eq. (1) as

y = X� + ( I n � �M ) � 1� ; (5)

and hence the variance of the error termv = ( I n � �M ) � 1� can be written as

� = E(vv 0) = � 2(( I n � �M ) � 1(( I n � �M ) � 1)t ) : (6)

Consistent and e�cient estimates of the � and � parameters are obtained by maximising the following
likelihood function, that correspond again to the n-dimensional integral

L (�; � ) = � n (x 2 A j �) (7)

=
1

(2� )n= 2 j� j
1
2

Z

A 1

Z

A 2

: : :
Z

A n

e� ( 1
2 x t � � 1 x ) ;

where A = f A i gi 2f 1;:::;n g and

A i =

(
[(X� ) i ; + 1 ) , if yi = 0 ;
(�1 ; (X� ) i ] , if yi = 1 :

As previously mentioned, MVN probabilities cannot be computed exactly, since there exists no closed
formula for solving the integrals in Eqs. (4) and (7) as long as � is di�erent from the identity matrix
(i.e. the case of independent observations). We hence resort to use a modi�ed version of the analytic

1See Chapter 1 of the book of LeSage and Pace [22] for more details on spatial autoregressive and spatial
error models.
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4 ProbitSpatial R package

approximation proposed by Mendell and Elston [29]. The idea is to rewrite the MVN probabilities as the
product of univariate conditional probabilities (we adopt the notation of Trinh and Genz [ 37]):

� n (x 2 f A1; : : : ; An g j �) = P(x1 2 A1; : : : ; xn 2 An )

= P(x1 2 A1) � P(x2 2 A2 j x1 2 A1)

�P(x3 2 A3 j f x1 2 A1; x2 2 A2g) : : :

�P(xn 2 An j f x1 2 A1; x2 2 A2; : : : ; xn � 1 2 An � 1g)

= P(x1 2 A1) �
nY

i =2

P(x i 2 A i j f x1 2 A1; : : : ; x i � 1 2 A i � 1g) :

The algorithm is based on the Cholesky decomposition of the variance-covariance matrix � = CCt ,
whereC is a lower triangular matrix (the decomposition always exists, since � is symmetric and positive
semi-de�nite by de�nition). The exponent of the integrand of Eq. ( 4) takes then the form

x t � � 1x = x t (C � 1)t C � 1x

and we use the transformation x = Cz (or, equivalently, z = C � 1x ), where x t � � 1x = z t z, with
dx = jCj dz =

p
j� jdz. Taking advantage of the lower triangular structure of the Cholesky decomposition

of �, the integral intervals A i = ( ai ; bi ) are transformed according to a � Cz � b. The new integral
limits ( a0; b0) can be computed iteratively, while the values ofzi , that cannot be computed directly, are
approximated using their truncated expected values:

~zi =
� (a0

i ) � � (b0
i )

�( b0
i ) � �( a0

i )
; (8)

where � and � represent the standard normal univariate density and cumulative distribution functions,
respectively. This is the key intuition beyond the Mendell-Elston approximation method, i.e. to replace
the ~zi values by truncated expected values ( ~zi is then the average value of a random variablezi that follows
the truncated univariate distribution). The algorithm iteratively substitutes the univariate conditional
probabilities with the value of Eq. ( 8), starting from the �rst random variable and uses the obtained
approximation for computing the next step. The algorithm ends when the probability of the last random
variable is computed and the �nal result is given by the following approximation:

� n (x 2 f A1; : : : ; An g j �) = P(x1 2 A1; : : : ; xn 2 An ) �
nY

i =1

(�( b0
i ) � �( a0

i )) :

The iterations of the Mendell and Elston algorithm follow the order of the variables as given by
the problem, but there exists evidence that di�erent re-orderings can lead to better approximations
[12, 16, 36]. If there were an exact solution to the integral, these orderings would not change the value
of the probability, as long as integration limits and rows and columns of � are rearranged accordingly,
but since we are using an approximation that runs iteratively over the n observations, it is advisable
to control the propagation of the approximation error, especially during the �rst steps of the iteration.
For that, Gibson et al. [16] propose to sort the observations in such a way that the outermost integrals
correspond to those observations that have the smallest expected values. A recent study by Connors et
al. [12] corroborates this hypothesis.

This numerical approximation can be directly used to compute the likelihood associated to SAR and
SEM probit models through Eqs. (4) and (7). Nevertheless, there are a few further precautions that
we adopted in order to reduce the computation time of the algorithm and improve the quality of the
approximation:

� massive use of sparse matrices and sparse linear algebra, especially for the computations relative
to the spatial weight matrixes W and M , that have dimension n � n, but usually high sparsity (lot
of zero entries);
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� the inverse matrixes (I n � �W ) � 1 and (I n � �M ) � 1 are approximated (whenn > 1000) with their
Taylor expansion (I n � �W ) � 1 � I n + �W + � 2W 2 + � 3W 3 + : : : and similarly for ( I n � �M ) � 1. This
is possible sinceW (resp. M ) is row-standardised and the spatial lag parameter� (resp. spatial
error parameter � ) is contained in the [� 1; 1] interval, hence all of the eigenvalues of�W (resp.
�M ) have absolute value smaller than 1.

� the most time-consuming part of the entire algorithm is the Cholesky decomposition of the sparse
n � n matrix �. The length of this part depends strongly on the number of non-zero elements
of �, that in turns depends on the sparsity of W and on the order of the Taylor approximation
of (I n � �W ) � 1 or (I n � �M ) � 1 detailed in the previous point. There exists several algorithms
that allow to reduce the number of non-zero elements in the Cholesky factor, based on a clever
reordering of the rows and columns of �. We chosed to perform the Approximate Minimum Degree
algorithm (a.k.a. AMD, see [1]) before the Cholesky decomposition, since it has been proved to be
really fast and e�cient: it slightly worsens the accuracy of the MVN probability, but busts the
computation time by several order of magnitude.

� the reordering of the observations proposed by Gibson et al. [16] should in theory be applied at
each iteration of the Mendell-Elston algorithm. This is obviously unfeasible for large samples. We
prefer instead to reorder only once, before the Cholesky decomposition.

� one may consider the use of the precision matrixP = � � 1 instead of the variance-covariance
matrix �, as suggested by Pace and Barry [31] and LeSage and Pace [22]. This proposal makes
perfectly sense, sinceP is usually sparser than �, and allows a faster Cholesky decomposition.
Obviously, the accuracy of the approximation is reduced. Further details on the implementation
of the precision-matrix version can be found in [32].

For the estimation of the parameters (�̂ ; �̂ ) we propose two optimisation procedures:

FL Maximisation of the approximated full log-likelihood by means of a multi-dimensional optimisation
algorithm and the corresponding gradient functions (not reported here, for details see [25]);

CL Maximisation of the log-likelihood conditional on � : at each stepi of the optimization, for a given
value of � i , a set of ^� i parameters is estimated by means of a Standard Probit estimation2. The
corresponding log-likelihood is computed and the optimizer will try to minimize the log-likelihood
by searching the optimal ^� 2 [� 1; 1]. In this way, we can use one-dimensional optimization, that is
way faster than a multi-dimensional one3.

To summarise, our proposal consists of four estimators, listed her with the corresponding R com-
mands:

FLUC Full log-likelihood with univariate conditional approximation of MVN probabilities and variance-
covariance matrix;
SpatialProbitFit(f,d,W,DGP,method="full-lik",varcov="varcov")

CLUC Conditional log-likelihood with the univariate conditional approximation of MVN probabilities
and variance-covariance matrix;
SpatialProbitFit(f,d,W,DGP,method="conditional",varcov="varcov")

FLUP Full log-likelihood with univariate conditional approximation of MVN probabilities and precision
matrix;
SpatialProbitFit(f,d,W,DGP,method="full-lik",varcov="precision")

CLUP Conditional log-likelihood with univariate conditional approximation of MVN probabilities and
precision matrix;
SpatialProbitFit(f,d,W,DGP,method="conditional",varcov="precision")

2We perform standard probit estimations with the speedglm.wfit function in R from package speedglm [14].
3We use the optimize function from the stats library in R, that performs golden-section search [35].
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6 ProbitSpatial R package

wheref is the regression formula to be estimated ,d is the database containing the variables,Wis a spatial
weight matrix of class dgCMatrix (see [4]) and DGPindicates if the data generating process is eitherSAR
or SEM.

3 Comparison with existing R libraries and other methods
found in the literature

In this section we compare the performances of existing algorithms for the estimation of spatial probit
models in R. We will consider the following implementations:

M1: ProbitSpatial , our package;

M2: spatialprobit R package by Wilhelm and Godinho de Matos [41];

M3: McSpatial R package by McMillen [27];

M4: EM estimator by McMillen [ 26], as coded in [7];

M5: Gibbs estimator by LeSage [21], as coded in [7];

M6: RIS estimator by Beron and Vijverberg [5], as coded in [7];

M7: GMM estimator by Pinkse and Slade [33], as coded in [7];

M8: LGMM estimator by Klier and McMillen [ 20], as coded in [7].

An extensive comparison with multiple sets of parameters is beyond the scope of this presentation.
We will consider a simple SAR DGP as in Eq. (2), with � = (4 ; � 2; 1), � = 0 :5, W the spatial weight
matrix with the 3 �rst nearest neighbours of n observations randomly distributed in the unit square, X 1

the intercept term, X 2 � N (2; 2) and X 3 � N (0; 1). We will look at the performances of the di�erent
estimators in terms of both accuracy of the estimated parameters and in terms of estimation time. The
tests are performed over samples of increasing size (n 2 f 100; 500; 1000; 5000; 10000; 50000g). Whenever
an estimator takes more than 5 minutes in average, we drop it from the comparison. In the Table1 we
report the mean bias of the estimated� 1; � 2; � 3 and � parameters, as well as the mean estimation time
over 100 repetitions with randomly generated samples. All simulations are performed usingRon a MAC
OS X 10.6.8, with a dual-core 2.66 Ghz processor and 8 GB of RAM.

The results contained in Table 1 show that the ProbitSpatial package is de�nitively outperforming
existing libraries in R. By looking at the �rst two columns we can see that ProbitSpatial does clearly
better than the functions contained in spatialprobit [41] (they use Bayesian estimation), both in terms
of accuracy than in terms of time. In particular, it is worth noting that the spatialprobit package
tends to underestimate the spatial dependence parameter. By comparing column one and three, we can
observe that the performance in terms of accuracy ofProbitSpatial and McSpatial are similar. This is
due to the fact that both packages are based on likelihood maximisation. Nevertheless,ProbitSpatial
is more suitable for large samples.

4 Other features of the library

The function SpatialProbitFit used for the estimation of SAR probit models can also be used to �t
spatial error models (SEM). Furthermore, it allows to set the following parameters:

DGP either SARor SEM;

method either conditional or full-lik . The �rst one implies a conditional estimation, the second
one corresponds to full-likelihood estimation, with gradient functions. Further details can be found
in [25].
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Table 1. Mean bias and estimation time (in seconds) of the eight estimators for increasing
sample sizes.

n M1 M2 M3 M4 M5 M6 M7 M8

100

� 1 1.40 -0.38 1.43 -1.15 1.44 0.76 780.87 1.73
� 2 -0.63 0.28 -0.65 0.64 -0.64 -0.35 -317.78 -0.71
� 3 0.41 -0.08 0.42 -0.28 0.43 0.14 226.63 0.54
� -0.02 -0.26 -0.01 -0.16 -0.10 0.00 -0.05 0.02
t 0.10 4.79 0.13 11.17 13.46 29.94 2.32 0.01

500

� 1 0.59 -1.04 0.59 -1.56 0.18 -0.18 56.36 0.67
� 2 -0.27 0.54 -0.27 0.79 -0.07 0.12 -27.51 -0.32
� 3 0.16 -0.26 0.16 -0.37 0.06 -0.13 14.87 0.14
� 0.00 -0.22 -0.00 -0.14 -0.08 0.01 0.00 0.13
t 0.24 8.15 1.45 762.34 1278.48 1273.64 276.93 0.32

1000

� 1 0.12 -1.18 0.12 0.18
� 2 -0.04 0.61 -0.04 -0.06
� 3 0.01 -0.31 0.01 0.02
� -0.01 -0.22 -0.01 0.12
t 0.41 11.70 10.26 3.13

5000

� 1 0.07 -1.20
� 2 -0.03 0.61
� 3 0.01 -0.31
� -0.01 -0.22
t 2.68 44.52

10000

� 1 0.00 -1.29
� 2 0.00 0.65
� 3 0.01 -0.33
� 0.00 -0.22
t 6.22 86.41

50000

� 1 0.01
� 2 0.00
� 3 0.00
� 0.00
t 58.40

varcov either varcov or precision . Should the likelihood function be computed using the variance-
covariance matrix (varcov ) or the precision matrix ( precision )? Default is varcov .

control a list of control parameters on the order of approximation of the Taylor expansion (I n � �W ) � 1 �
I n + �W + � 2W 2 + � 3W 3 + : : :, the tolerance of the optimizer and the pruning tolerance for certain
matrices. See documentation of the function in the package.

It is worth noting that the output of the SpatialProbitFit is a model of classSpatialProbit
containing information on the estimated parameters, the value of the log-likelihood and other model
characteristics.

For the SpatialProbit class, the followingmethods are available

e�ects returns the marginal e�ects of the model (average direct, average indirect and average total
e�ects as in LeSage and Pace [22]).
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�tted returns the �tted values of the model in one of the following forms:

� link : the value of the latent variable;

� response the value of the probability;

� binary 0/1 vector of probability being greater than cut (default for cut is 0.5).

predict returns in-sample predict values of a new matrix of covariates. Same available forms asfitted ;

residuals returns the generalised residuals of the model;

summary returns descriptive statistics of the data and model, the estimation time, the standard errors
of the estimated parameters (computed with likelihood-ratio tests or with the variance covariance
matrix if the option covar = TRUE) and the confusion matrix with the accuracy of the estimated
model.

Finally, we also included two functions for simulation purposes:generate_Wfor generating a spatial
weight matrix from a set of coordinates andsim_binomial_probit for generating the data.

5 Conclusions and forthcoming versions

Comprehensive tests presented in [25] and the ones presented here con�rm that theProbitSpatial
package is, at the moment, the best option in R for �tting spatial binary choice models, under both SAR
and SEM speci�cations. The improvement with respect to existing libraries is both in terms of accuracy
than in terms of estimation time. It is also the only feasible option for large samples with more then a
few thousand observations.

For the forthcoming version of the package we plan to implement:

� an estimator for the SARAR(1; 1) model;

� an estimator for the spatial Durbin model, where spatial autoregression a�ects the covariates;

� a prediction function for out-of-sample observations (see [19] for details on best linear unbiased
prediction in spatial framework);

� �x bugs of the current version.
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Abstract. Robustness of standard regression models have been studied quite extensively. When repeated
measures are available, the methodological framework is generalized to multilevel models, for which little
is known in term of robustness, even in the simplest case of ANOVA. We present a sequential forward
search algorithm for multilevel models that allows robust and e�cient parameters estimation in presence
of outliers, and it avoids masking and swamping. The inuence of outliers will be monitored at each
step of the sequential procedure, which is the key element of the forward search. There are peculiar
features when the forward search is applied to multilevel models. Such features pose new computational
challenges, as some restrictions, that make the sub-models identi�able at every step, are required. The
method is illustrated by an application to real data where exports of co�ee to European countries are
modeled and analyzed to identify outliers that might be linked to potential frauds. Preliminary results on
simulated data have highlighted the bene�t of adopting the forward search algorithm, which can reveal
masked outliers, inuential observations and show hidden structures.

Keywords. Multilevel Analysis, Outliers, Robust Methods

1 Introduction and motivation

In this paper a robust approach to the study of multilevel models is suggested. Multilevel models
are a particular case of Linear Mixed Models (LMM) which are particularly attractive when repeated
measures of variables are collected on a sample of individuals [7]. Parameters of these models are obtained
through the GLS estimator which can be strongly a�ected by the presence of outliers and inuential
observations. It is then crucial to monitor the e�ect that highly inuential observations could have on
the �nal estimates and apply robust estimators. Many inuence diagnostics have been proposed to detect
outliers in longitudinal data analysis (see [7], ch. 6, for a review), but they are all based on the leave-k-out
approach and can be strongly a�ected by the so called \masking" e�ect when the real number of outliers
is greater than k. A monitoring method, which has revealed to be particularly e�ective to cope with the
masking e�ect, is the forward search which has been originally proposed for linear regression models (see
[1]), but it has been extended to many other �elds thanks to its great exibility [ 3].

The out-performance of the forward search and the statistical properties under the regression model
are illustrated in the recent papers [2] and [8]. The key of the success of the forward search is that it
o�ers a sequential algorithm such that, at each step, an e�cient maximum likelihood estimate is carried
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out. In general, after �tting a parametric model with a maximum likelihood estimator, a set of residuals
is computed. Being a sequential algorithm, it su�ers from heavy load of computational time and e�cient
routines must be adopted to get results in short time.

In this paper we extend the forward search approach to multilevel models to monitor the inuence
of outliers on estimated coe�cients and to suggest a way to obtain a robust estimator. The correlation
structure of longitudinal data is more complex than that of regression models for cross-sectional data and
this opens new challenging issues we try to address in this paper. In particular, we suggest an original
method to increase the size of a basic subset which is tailored on LMM features and enables us to take
into account the identi�ability problems which could arise from the application of the forward search to
longitudinal data.

The paper is structured as follows. In the next section the data used to apply the robust forward
search approach are presented. The description of the data comes before the introduction of the model,
which is speci�ed in sections3 and 4 together with the coe�cients estimator, because the construction
of the model is conditional to the trend and seasonal pattern of the data. The extension of the forward
search to LMM and the main related issues are discussed in Section5. The application of the forward
search to simulated data and to real trade data is illustrated in section6. Section 7 is devoted to the
�nal discussion of results and possible further extensions.

2 Data, their features and economic characteristics

Motivation of the case study

Regression models have widely been used to understand, model and predict many trade data concerning
commodities. Among others, co�ee represents one of the most actively traded commodities on earth.
Existing modern robust approaches using liner models are presented in [5].

The commercial policy of the European Union (EU) is generally based on uniform principles and
common agreements with third countries. The infringement of such principles by traders operating in
the EU market can have big negative impact on the EU economy and the EU budget.

One of the most common consequences is the considerable and often systematic under/over declaration
of the invoice value which produces groups of outliers and clusters with linear structures, which are clearly
visible in scatter plots of the traded value and volume. Nevertheless, such patterns can also emerge
from perfectly regular trade, for example in presence of di�erent product quality levels, peculiar market
conditions, or episodic meteorological events.

Additionally, since the foundation of the Economic and Monetary Union (EMU) in Europe, it was
expected to foster price transparency and convergence of goods and services among Member States. From
a theoretical point of view, this means reducing deviations from the law of one price which states that
market arbitrage should enforce broad parity in prices across individual goods. Once prices are converted
to a common currency, the same good should be sold for the same price in di�erent countries.

For all these reasons, detecting outliers for trade data is particularly important. That might highlight
frauds or market ine�ciencies. On the other hand, outlier detection has to be very accurate and it has
to minimize the number of false detection. As robust estimators are usually less e�cient than non robust
estimators, tests for outlier detection based on very robust estimators usually detect a high number of
false outliers [6]. Therefore, a robust and e�cient algorithm, like the forward search, must be used to
correctly identify true outliers.

Description of the data-set

Co�ee production takes place mainly in developing countries. One of the biggest producers is Brazil.
Co�ee's consumption, instead, is well spread all over European countries, none of which produces it. The
co�ee price is characterized by relatively low price elasticity of supply because new plants require more
than two years to become productive. Likewise demand is characterized by low price elasticity, because it
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Figure 1. Left panel: Scatterplot of the data with symbol for each destination. Largest importers
are Germany and Italy. Right panel: scatterplot of the log-log data

is quite stable and changes only if big movements in price arise independently from any income increase.
As a consequence, co�ee price time series show a very high variability and outliers are very likely to
appear.

In this work we consider the co�ee traded from the origin Brazil to destination of 18 countries in
Europe. For each destination country the monthly value (in Euro) and the monthly quantity (in tons)
of co�ee sold from Brazil, to the speci�c country, are recorded. Monthly �gures of sales are recorded for
approximately 5 years. We stick on the 18 countries that traded with Brazil every month in these 5 years
span. Therefore, our dataset represents a case of a balanced design in the framework of longitudinal data
analysis. However, our results and methods are not sensitive to deviations from that balanced structure,
although minor adjustments might be required to handle some missing data.

To make notation speci�c, we have that for each destination country (group) it is available the value
of co�ee imported from Brazil, denoted as Vi;t with i = 1 ; : : : ; g and t = 1 ; : : : ; ng. Additionally, the
quantity imported by each country is denoted by Wi;t . From the above notation, it is already considered
the option to have a di�erent number of replicates for each country as the number of replicatesng might
be di�erent for each country.

A snapshot of the whole set of data is given in Figure1 where each destination country is plotted
with a di�erent symbol. The left panel of Figure 1 is the prototype of scatterplot used by [5] for their
analysis, where destinations were ignored.

To highlight the monthly time evolution of the trades, we also show, in Figure 2, the logged time
series ofV and W for Brazil versus Italy. A clear relationship is visible between the two series, but the
presence of a long-term trend is questionable. The seasonality is quite clear in June and December, when
the minimum and maximum yearly values happen, while it does not look particularly strong in other
months.

3 Linear Mixed Models (Multilevel) for repeated measures

We consider the uni�ed theory of linear mixed model as multilevel models, using the notation of [9],
Chapter 4. The LMM has �xed component X� and the random e�ect u written in the form

y = X� + Zu + �; (1)

where Z is a kind of indicator matrix; an example of the structure of Z is postponed to Section4. The
model is well speci�ed under a number of subsequent assumptions. Denoting withI the identity matrix
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Figure 2. Time series of relevant quantities, in log scale, for destination Italy

and with 0 either a vector or a matrix with zeros (clear from the context), the random componentu and
the error term � have the following features:

E
�
u
�

�
=

�
0
0

�
; Cov

�
u
�

�
=

�
G 0
0 R

�
with G = � 2

u I and R = � 2
� I :

Model (1) is very exible, despite its simplicity. For instance it o�ers a very convenient framework
when repeated measures, which are generally dependent, have to be analyzed. For repeated measures it
can be used as a \simple" random intercept model (also called a constant correlation model) where all
components of� , but the intercept, are common among groups. Representation (1) is appropriate even
if regression coe�cients are assumed to vary among groups. Model (1) can also be used when groups are
correlated to each others, by considering a richer structure for eitherR or G, or both. In the sequel we
review some existing results of LMM and illustrate our robust procedure under the simplest speci�cation
of LMM, i.e. the uniform correlation model with only a random intercept.

One way to derive an estimate of� is to rewrite the LMM as a linear model with correlated errors
having form

y = X� + � ? where � ? = Zu + �:

Under this representation, denoting with T the transposition of a matrix, clearly we have

Cov(� ?) = V = ZGZ T + R:

For the linear model with correlated errors, regression parameters can be estimated via the Generalized
Least Squares (GLS) which can be written as

~� = ( X T V � 1X ) � 1X T V � 1y: (2)
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For y having a general distribution, (2) can be shown to be the best linear unbiased estimator for� .
Alternatively, if y is multivariate normal then the right-hand side of ( 2) is both the maximum likelihood
(ML) estimator and the uniformly minimum variance unbiased estimator.

When random e�ects are included, then a uni�ed way to see the overall estimation problem is to
rewrite it through the notion of best linear unbiased prediction (BLUP). It turns out that ( 2) is also the
BLUP of � and the BLUP of u is given by

~u = GZ T V � 1(y � X ~� ):

Both GLS and BLUP estimators require elements of covariance matrices. There is a large and varied
literature on estimation of covariance matrices in mixed models. In recent years, with the advent of
better computing algorithms, ML or restricted ML (REML) have become the most common strategies
for estimating the parameters in covariance matrices. An advantage in using REML compared to ML is
a better accuracy in small samples.

Whatever the method used, once parameters ofV and G are estimated, they are plugged into the
BLUP yielding to estimated BLUP (EBLUP). Formally, EBLUP are given by introducing ^ � u and �̂ � .
Subsequently, estimated covariance matriceŝV and Ĝ lead to estimated BLUP given by

�̂ = ( X T V̂ � 1X ) � 1X T V̂ � 1y and û = ĜZ T V̂ � 1(y � X �̂ ):

EBLUPs are important to obtain the �tted values of the model given by

ŷ = X �̂ + Z û: (3)

Estimated BLUPs have two sources of variability, namely estimation of the �xed and random e�ects pair
� and u and estimation of covariance matricesG and V . This is somehow critical as both should be
taken into account when making inference.

All statistical results discussed so far are key elements to derive the residuals from model (1), which
are computed by taking the observedy and the �tted values from ( 3). Residuals are the building bricks
to set up the forward search, whose details will be discussed next.

4 Model speci�cation for trade co�ee data

Given the data and our time-varying variables, discussed in Section2, we will be using the following
notation. It is often customary to take a log-log relationship in economics, due to its connection with
elasticity. The resulting plot of such a joint transform is sketched in the right panel of Figure 1. From that
plot emerges that there is a sort of \common slope" driving the relationship between the log variables,
justifying the choice of the random intercept model.

Matching the general notation of LMM discussed in Section3, let y = log V and the X matrix
built using log W , a linear trend and a set of seasonal dummies, assuming that the seasons will begin in
January, and drop in December. So, forg Countries, if we haveng observations for the �rst Country, we
could sketch the X matrix as

X =

2

6
6
6
6
6
6
6
6
6
6
6
4

1 logWCountry 1,1 1 1 0 � � � 0
1 logWCountry 1,2 2 0 1 � � � 0
...

...
...

...
...

...
1 logWCountry 1,ng ng 0(?) 0(?) � � � 1(?)
...

...
...

...
...

...
1 logWCountry g,1 1 1 0 � � � 0
...

...
...

...
...

...

3

7
7
7
7
7
7
7
7
7
7
7
5
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The question mark associated to the last row of the �rst country is related to the last recording of value
and quantity, for which the occurring month is \arbitrary".

As stated in Section3, the matrix Z is, in general, a kind of indicator matrix. Under the special case
of random intercept model, then Z has a number of columns equal to the number of groups. Speci�cally,
for the random intercept model we have

Z =

2

6
6
6
4

1ng 0ng � � � 0ng

0ng 1ng � � � 0ng
...

...
...

...
0ng 0ng � � � 1ng

3

7
7
7
5

5 The forward search for LMM

The forward search is a sequential procedure which is based on a set of algorithms such that we start from
an outlier-free subset of sizem? < n (the Basic Subset, BSB) and, at every step, the BSB is increased by
including units closer to the selected model. In general, inclusion is such that at every step we move from
a subset of sizem to a subset of sizem + 1, with iterations until all n data are included. When outliers
or other inuential observations enter the subset, through the monitoring of relevant statistics, sharp
movements are recorded. For regression models, this procedure is illustrated in [1] and made precise in
[8].

There are several di�erences from regression to LMM. We start by highlighting that it is common
to have time series even for simple random e�ects models, thus the selection of units belonging tom? is
made accordingly. To be speci�c, a sensible approach is to build the initial subset by taking contiguous
observations in each group (here represented by all destination countries). Using proper notation, tailored
to the set of available regressors (one explanatory variable, one time index for the trend and eleven
dummies for the monthly seasonality), we have that, for each destination countryi , with i = 1 ; : : : ; g, a
coherent set of observations is given by �xing a time indext ( i ) , and then selecting contiguous observations,
the number of which is driven by k, the number of columns of the X matrix. Speci�cally, we select
an arbitrary set of observations for each groupmt ( i ) ;t ( i ) +1 ;:::;t ( i ) + k+1 which ensures that the model is
identi�able. A similar choice is made for all groups but, in general, t ( i ) 6= t ( j ) , with j = 1 ; : : : ; g and
i 6= j . An initial subset M1 given by

M1 =
g[

i =1

f mt ( i ) ;t ( i ) +1 ;:::;t ( i ) + k+1 g;

is then used to �t the random e�ect model. After �tting the model the following algorithm is performed

1. Squared residualsr 2
i;t = ( yi;t � ŷi;t )2, for all units are computed (even for those that did not

contribute to the �tting). With this notation yi;t and ŷi;t denote a single element from the vector
expressed in equations (1) and (3) respectively.

2. Squared residuals are sorted yielding tor 2
i;t [?i ], with the argument [?i ] denoting the that the sorting

is kept separated for each group.

3. The median of r 2
i;t [?i ] is computed for eachi and then stored.

Steps 1 to 3 above are then repeated by changing, for each group, the time indext ( i ) and leading to sets
M2, M3, . . . , all having the same size. This procedure is repeated 10000 times, as suggested by [3], since
choosing among all possible subsets is unfeasible for almost all practical applications.

For each group the observations that lead to the smallest median of sorted residuals are those con-
tributing to the BSB m?. Hence, not necessarily the time index to buildm? is identical for all groups,
but inside each group, the contiguity of observation is at this stage guaranteed. This last restriction,
however, might be relaxed when having anX matrix with a time index as explanatory variable, since
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the sorting of the data is irrelevant in the �tting when the time dependence is explicitly modelled with
a time trend variable.

As stated above, once �tted the model, computing residuals during the forward search is quite similar
to standard regression. The �tted values (3) are obtained after getting �̂ , �̂ u and �̂ � from the function
lmer of library lme4 ([4]). Plugging such estimates into BLUP give estimates of ^u and ŷ.

Some discussion is needed when �tted values (3) and residuals are computed for all units, i.e. also
for units that did not contribute to the estimation step. Fitted values and residuals are obtained by
considering all entries ofX (similarly to the regression model) but using only units that contributed to
the �t to extract entries of Z (unlike the regression model). This last restriction is needed to ensure the
conformability of product of matrices.

The key di�erence with regression model, however, comes when moving fromm to m + 1 because of
the presence of groups in the data (here represented by each destination). The move fromm to m + 1
requires, once again, the sorting of squared residuals.

Our forward search algorithm is quite exible and relatively general, as it does not require any group
membership balancing during the procedure. In other words, at every step of the forward search, all
groups must have only the minimum number of observations, saymt ( i ) ;t ( i ) +1 ;:::;t ( i ) + k+1 , such that the full
model is identi�able.

As stated above, the inclusion of new units, i.e. the move from sizem to m + 1, is based on the
squared residuals computed for all data. As for the choice of the BSB, once residuals have been computed,
the sorting is made separately for every group. Therefore, the di�erence compared to the forward search
in regression, is that the sorting is not made on the whole dataset, but split by group. In practice, there
are squared residuals sorted for the �rst group, then squared residuals sorted for the second group, and
so forth.

The (m + 1)-th observation joining the dataset is the one for which the squared sorted residuals not
belonging to the m-th step is smallest. As a consequence, if observations belonging to the same group
are well described by the model, and consequently have all small residuals, then the units forming the
subset at stepsm + 1, m + 2, : : :, will belong to the same group. Therefore, at each step of the forward
search, the size of each group belonging to the subset of sizem can be, potentially, very di�erent. As
stated above, when discussing the choice of the BSB, the time index in the inclusion is not considered,
as there is an explanatory variable taking the time trend into account, so that the �t does not require,
necessarily, observations to be contiguous.

The peculiar feature of the forward search is that the inclusion of outliers or the inclusion of inuential
observations is highlighted by sharp peaks moving fromm to m+1. This is also true for LMM. Inuential
observations, hidden structures, or outliers display similar pattern in many diagnostics summaries, like
plot of residuals and standardized estimates of random e�ects.

6 Forward search for simulated and trade co�ee data

An example with simulated data, where two outliers were added, is reported in Figure3. The two outliers
are the two central lowest extreme observations in the log-log transform (see the right panel of Figure3)
and, for the sake of the illustration, they have been assigned to Germany (DE). The time series of the
simulated data, contaminated with two outliers is illustrated in Figure 4. Their e�ect is visible in the
logV variable, but less visible, in this scale, for the logW .

The structure is quite di�erent from our example co�ee data, but a similar pattern with some het-
eroschedasticity can be seen.

After running the forward search we monitor several graphical diagnostics. One of the most important
plot in this framework is the monitor of estimates of standardized random e�ects, which is sketched in
Figure 5. There is evidence, from �ndings in Figure 5, that toward the last steps of the forward search,
inuential observations were included into the procedure, showing sharp peaks. Not all groups, in the
simulated data, were a�ected in the same way by the inclusion of outliers. In general the random
components is absorbing inuential observations, so outliers are likely to appear in the estimated random
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Figure 3. Scatterplot of the simulated data with �ve groups (left panel). Simulated data have
also two outliers. The right panel is the associated log-log transform, with the two outliers
located in the lowest part of the plot

Figure 4. Time series of the simulated data for the country with two outliers. The outliers were
added in both variables
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Figure 5. Estimates of random e�ects on the simulated and contaminated data during the
forward search. Peaks toward the end of procedure shows the steps when outliers are included

components. There are peaks also in the residuals, but since the random e�ects are fewer, the diagnostic
plot is simpler to interpret.

For the co�ee data, introduced and discussed in Section2, running the forward search lead to results
which do not show any inuential observations in the data. A snapshot of such a summary is visible
by exploring the estimated standardized random e�ects during the forward search. Since there are 18
destination countries, it is hard to understand whether or not outliers, or hidden structures, are into the
dataset.

Robust procedures, often, tend to spot outliers even when they are not present (false signal). The
forward search does not su�er from that unappealing feature. However, in the future, we will perform
more simulations, with cleaned and contaminated data, for better understanding the false discovery rate
of the forward search, and compare it with other robust techniques.

7 Conclusions and discussion

We have introduced the forward search for LMM where correlation is induced by repeated measures.
Previous strategies were restricted mostly to uncorrelated data and regression. The bene�ts of the
introduced robust and e�cient technique are, essentially, two-folds: when outliers are present, they are
properly highlighted and estimates are una�ected by their presence. When data are outlier-free or when no
hidden structure is inside the data, the forward search does not ag observations as outliers (false signals).
An interesting avenue for future research is to add some outliers in the real data for understanding the
e�ect of inuential observations on the co�ee data. A preliminary study on contaminated co�ee data,
not reported here for conciseness, suggested to introduce a small fraction of outliers in order to have a
meaningful set of diagnostics. This is a subject that will be studied carefully in the nearest future.
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Figure 6. Estimates of random e�ects on the co�ee trade data during the forward search. A
quite smooth behaviour is visible, denoting lack of evidence of suspicious trades

Future research is toward several directions. The �rst avenue is to consider more general models than
the random intercepts. In this paper, we have taken \for granted" that the explanatory variables had
always to be included, but this might be questionable, and even dependent on the step of the forward
search.

Simulations with more structured outliers must be carried out so that there might be more con�dence
and support for interpretations. A key feature is to build proper \test-based" inference to create a
sequential procedure for testing for outliers, as explained by [8]. This last feature is, probably, the most
challenging from the computational point of view, as it requires many forward search run in parallel.
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Some mathematical notes on
comprehensive factor analysis
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Abstract. In the currently prevalent model of factor analysis (FA), speci�c factors and errors are not
dissociated, though they had been separated in the original conception of FA. Thus, an FA model with
speci�c factors dissociated from errors is considered here, whose least squares procedure is referred to
as comprehensive FA. The main goal includes showing that the model part of comprehensive FA and
residuals are identi�able, common and speci�c factors are undetermined but have some constancy, and
comprehensive FA has clear relationships with principal component analysis.

Keywords. Speci�c factors, Errors, Original factor analysis, Principal component analysis.

1 Introduction

The currently prevalent model of factor analysis (FA) can be expressed as

x = � f + 	 u (1)

for p � 1 observed variable vectorx whose expectationE [x] equals thep � 1 zero vector 0p. Here, f and
u are m � 1 and p � 1 latent variable vectors, respectively, with the elements off called common factors
and those ofu called unique factors, andm < p < n . On the other hand, �( p � m) and 	( p � p) are
�xed parameter matrices, where � contains factor loadings, and 	 is the diagonal matrix, the squares of
whose diagonal elements are called uniqueness [5].

According to [8] original conception of FA, 	 u is decomposed into an unsystematic error and the
factor speci�c to the corresponding variable: 	 u = � s + e, with e(p � 1) an error vector, s(p � 1) the
speci�c factor vector, and � a p� p diagonal matrix [4, 6]. The decomposition allows us to rewrite (1) as

x = � f + � s + e: (2)

Each diagonal element of � 2 is called speci�city in that it stands for to what degree an observed variable
is explained by the corresponding speci�c factor ins. The expectations for f; s; and e are assumed as
E[f ] = 0 m ; E [s] = E [e] = 0 p, and

E[f f 0] = I m ; E [ss0] = I p; E [fs 0] = Om � p; (3)

E [fe 0] = Om � p; E [se0] = Op� p; E [ee0] = 
 2: (4)

with 
 a p � p diagonal matrix, Om � p the m � p matrix of zeros, and I m the m � m identity matrix.
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It is desirable that the speci�city � 2 in (2) is estimated rather than the error-perturbed uniqueness
	 2 in (1). However, the model (2) has only been mentioned so far without a parameter estimation
procedure presented. In order to allow the estimation, we consider modifying (2) in this paper.

The modi�cations are as follows:
[1] Common and speci�c factors are treated as �xed parameters rather than variables;
[2] No distributional assumptions are made for errors: (4) is not assumed.
By [1] , our version of (2) can be written in the matrix form

X = F � 0+ S� + E = ZB 0+ E : (5)

Here, X is the n-observations � p-variables column-centered data matrix, F is the n � m matrix of
common factor scores,S is the n � p one of speci�c factor scores, andE is the n � p error matrix, with
Z = [ F; S](n � (m + p)) and B = [� ; �]( p � (m + p)) the block matrices of parameters to be estimated.
The matrix versions of (3) can be expressed as

1
n

F 0F = I m ;
1
n

S0S = I p;
1
n

F 0S = 0 m � p summarized as
1
n

Z 0Z = I p+ m : (6)

Owing to [2] , i.e., no constraint for the errors in E , we may simply consider minimizing the squared sum
of errors

f (Z; B ) = jjE jj2 = jjX � (F � 0+ S�) jj2 = jjX � ZB 0jj2 (7)

subject to (6). Here, Z and E being column-centered (i.e., the matrix version ofE [f ] = 0 m and E[s] =
E [e] = 0 p) is not be considered, since it is satis�ed by the solution of the minimization problem as
described later.

Indeed, the algorithms for the minimization have already been presented by [1, 3, 7, 9, 11]. However,
it has not been recognized that the minimization is underlain by the model (5): in the above literature,
the underlying model has not been considered and (7) is rather described asf (F; � ; U; 	) = jjX � (F � 0+
U	) jj2 with U an n � p matrix of unique factor scores: the algorithms have been presented rather for
estimating the unique factors/uniqueness.

We refer to minimizing (7) subject to (6) as comprehensive FA (Comp-FA) in this paper. Its purpose
is to present new results on the Comp-FA solution as theorems with some lemmas. They includes [A]
the identi�ability of � ; � ; ZB 0, and E, [B] the identi�ability of SXF ; SXS ; SF E ; SSE ; and SEE with
SXF denoting the covariance matrix between the columns ofX and those of the optimal F , [C] the
indeterminacy of F and S, and [D] the relationships to principal component analysis (PCA). Before
presenting main results, we describe the preliminary ones in the next section. Throughout the paper, we
suppose that the rank ofXB equals the number of variables:

rank(XB ) = p; (8)

which implies rank(X ) = rank( B ) = p, the existence of (X 0X ) � 1, and BB + = I p with B + the Moore-
Penrose inverse ofB .

2 Preliminary Results

The Comp-FA solution is given by the matrices Z and B that minimizes (7) subject to (6). Both ma-
trices cannot be jointly obtained in an explicit form, but if one of them is given, the solution of the
other matrix can be obtained explicitly. In this section, we �rst present a useful decomposition of the
loss function (7) as a theorem, which is followed by describing the properties of the solution already known.

Theorem 2.1. Under the constraint (6), the loss function (7) can be decomposed as

f (Z; B ) = jjX � ZS0
XZ jj2 + njjSXZ � B jj2: (9)

Here, SXZ = n� 1X 0Z = n� 1X 0[F; S] = [ SXF ; SXS ] with its blocks SXF = n� 1X 0F and SXS = n� 1X 0U
the covariance matrices of observed variables to common factors and unique ones, respectively.
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Proof. (7) can be rewritten as jjX � ZS0
XZ + ZS0

XZ � ZB 0jj2 = jjX � ZS0
XZ k + h � 2trC with h =

jjZS0
XZ � ZB 0jj2 and C = ( X � ZS0

XZ )0(ZS0
XZ � ZB 0). Here, we can expandC and use (6) to haveC =

X 0ZS0
XZ � X 0ZB 0� SXZ Z 0ZS0

XZ + SXZ Z 0ZB 0 = nSXZ S0
XZ � nSXZ B 0� nSXZ S0

XZ + nSXZ B 0 = Op� p.
Further, (6) leads to h = njjSXZ � B jj2 .

From (9), we can �nd that, for given Z , the optimal B = [� ; �] is given by

B̂ = [ SXF ; diag(SXS )]; i.e.; �̂ = SXF and �̂ = diag( SXS ): (10)

The optimal Z for given B̂ is given by

Ẑ = Z1 + Z2 = n1=2K 1L 0
1 + n1=2K 2L 0

2 = X B̂L 1� � 1L 0
1 + n1=2K 2L 0

2 (11)

with Z1 = n1=2K 1L 0
1 = X B̂L 1� � 1L 0

1 and Z2 = n1=2K 2L 0
2. Here, K 1(n � p); L 1((p + m) � p), and � (a

p � p diagonal matrix) is given through the singular value decomposition (SVD) ofn� 1=2X B̂ :

n� 1=2X B̂ = K 1� L 0
1: (12)

The remaining matrices K 2(n � m) and L 2((p + m) � m) form K = [ K 1; K 2] and L = [ L 1; L 2] satisfy
K 0K = L 0L = LL 0 = I p+ m . In (11), we can �nd that Z1 is uniquely determined, but Z2 and Ẑ are not
uniquely determined.

Using the fact that (12) leads to the eigenvalue decomposition (EVD) ofB̂ 0SXX B̂ de�ned as

B̂ 0SXX B̂ = L 1� L 0
1 (13)

and the transpose of (12) post-multiplied by (11) provides

SXZ = B̂
0+ L 1� L 0

1; (14)

the following algorithm can provide the solution of B = [� ; �] [ 1]:
Step 1. Initialize B̂ so as to satisfy (8)
Step 2. Perform EVD (13) to obtain SXZ with (14)
Step 3. Update B̂ with (10)
Step 4. Finish if convergence is reached; otherwise, back to Step 2.

In [1], it has been proved that (11) is column-centered ifX is so.

3 Identi�ability of Comp-FA Model

We suppose thatB̂ resulting in (10) also satis�es (8) with rank( X B̂ ) = p. This section is started with the
theorem which shows the identi�ability of the loadings in � and the speci�cities in � 2 obtained through
the four steps in the last section.

Theorem 3.1. If the diagonal elements of� in EVD (13) have distinct values, then SXZ in (14) is
uniquely determined for givenSXX and B̂ . Further, SXZ gives the uniqueB̂ with (10).

Proof. If � has distinct diagonal elements, then L 1 and � are uniquely determined for given SXX as in
(13). Further, B̂ satisfying (8) provides the unique B̂ + . Those L 1; �, and B̂ + uniquely determine SXZ

as in (14). Further, it gives the unique B̂ = [ SXF ; diag(SXS )] with (10), since of SXZ = [ SXF ; SXS ].

The following lemma and theorem show that the model partF � 0+ S� = ZB 0 in (5) can be identi�ed:

Lemma 3.2. The covariance matrix SXZ in (14) is also expressed as

SXZ = SXX B̂L 1� � 1L 0
1: (15)
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Proof. Pre-multiplying the left and the right hand sides of (11) by n� 1X 0 leads toSXZ = SXX B̂L 1� � 1L 0
1+

n� 1=2X 0K 2L 0
2. Here, X 0K 2L 0

2 is found to disappear asX 0K 2L 0
2 = B̂

0+ B̂ 0X 0K 2L 0
2 = B̂

0+ L 0
1� K 0

1K 2L 0
2 =

Op� (m + p) using (12) and K 0
1K 2 = Op� m .

Theorem 3.3. The solution for ZB 0 = F � 0+ S� is expressed as

Ẑ B̂ 0 =
p

nK 1L 0
1B̂ 0 = X B̂L 1� � 1L 0

1B̂ 0 = XS � 1
XX S0

XZ B̂ 0 = X B̂S0
XZ S� 1

XX : (16)

Proof. Pre-multiplying both sides of (12) by (X 0X ) � 1X 0 leads to n� 1=2B̂ = ( X 0X ) � 1X 0K 1� L 0
1, which

implies B̂L 2 = Op� m since ofL 0
1L 2 = Op� m . This fact and (11) lead to Ẑ B̂ 0 = ( n1=2K 1L 0

1+ n1=2K 2L 0
2)B̂ 0 =

n1=2K 1L 0
1B̂ 0 = X B̂L 1� � 1L 0

1B̂ 0. Further, (15) leads to S� 1
XX SXZ B̂ 0 = B̂L 1� � 1L 0

1B̂ 0 and this being sym-
metric implies S� 1

XX SXZ B̂ 0 = B̂S0
XZ S� 1

XX , which complete (16).

As found in (16), F � 0 + S� = ZB 0 is identi�able and its solution is a linear combination of the
columns in X .

4 Properties of Residuals

The properties of the resulting residuals inÊ = X � Ẑ B̂ 0 are considered in this section. Theorem3.3
shows that Ê is also identi�able and a linear combination of the columns of X . It implies that Ê is
column-centered and its inter-variable covariance matrix is expressed asSEE = n� 1Ê 0Ê , which can be
rewritten as follows:

Theorem 4.1. The p� p covariance matrix SEE = n� 1Ê 0Ê for residuals is expressed using o�d(SXS ) =
SXS � diag(SXS ) as

SEE = SXX � �̂ �̂ 0 � o�d (SXS )�̂ � �̂ o�d (SXS ) � �̂ 2: (17)

Proof. Using Ê = X � Ẑ B̂ 0 and (6), we have SEE = SXX � SXZ B̂ 0 � B̂S0
XZ + B̂ B̂ 0. Here, B̂ is

substituted by (10) to provide SXZ B̂ 0 = [ SXF ; SXS ][�̂ ; �̂] 0 = �̂ �̂ 0+ SXS �̂ = �̂ �̂ 0+ f �̂ + o�d( SXS )g�̂ =
�̂ �̂ 0+ �̂ 2 + o�d( SXS )�̂ . Using this and B̂ B̂ 0 = �̂ �̂ 0+ �̂ 2 in SEE = SXX � SXZ B̂ 0� B̂S0

XZ + B̂ B̂ 0 leads
to (17).

In general, (17) is not a diagonal matrix, which implies that the residuals are correlated between
variables.

Theorem 4.2. The p-residuals � (m + p)-factors covariance matrix, SEZ = [ SEF ; SES ] = n� 1Ê 0Ẑ =
[n� 1Ê 0F̂ ; n � 1Ê 0Ŝ], is expressed asSEZ = [ Op� m ; o�d (SXS )], i.e.,

SEF = Op� m and SES = o�d (SXS ) (18)

Proof. Using (6) and (10), we haveSEZ = n� 1(X � Ẑ B̂ 0)0Ẑ = SXZ � B̂ = [ SXF ; SXS ] � [�̂ ; �̂] =
[Op� m ; o�d( SXS )].

The equation SEF = Op� m in the theorem shows that the residuals are uncorrelated with common
factors, while SES = o�d( SXS ) implies that the residual for each variable is uncorrelated with the speci�c
factor for that variable, but correlated with the speci�c factors for the other variables.

The following lemma and theorem concern the amount of residuals:

Lemma 4.3. The post-multiplication of the p-variables � (m + p)-factors covariance matrix by its trans-
pose equals the sample covariance matrix:

SXZ S0
XZ = SXX (19)
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Proof. Using (14), we haveSXZ S0
XZ = B̂

0+ L 1� 2L 0
1B̂ + , which is rewritten as B̂ + 0

B̂ 0SXX B̂ B̂ + = SXX

using (13) and B̂ B̂ + = I p.

Theorem 4.4. The amount of residuals, i.e., the resulting value of loss function (7), is expressed as

jj Ê jj2 = n tr (SXX � �̂ �̂ 0 � �̂ 2) = njjo�d (SXS )jj2 (20)

Proof. The �rst identity in (20) is given by using tr o�d( SXS )�̂ = 0 in f (Ẑ; B̂ ) = ntrS EE with (17). The
second identity follows from (9): the term jjX � ZS0

XS jj2, in which Ẑ is substituted, disappears as

jjX � S0
XZ jj2 = ntrS XX � 2ntrS XZ S0

XZ + jj ẐS0
XZ jj2 = 0 (21)

using (6) and (19). That is, the resulting value of (7) or (9) amounts to njjSXZ � B̂ jj2 which is found to
equal njjo�d( SXS )jj2 using (10).

The theorem shows that the amount of residuals is proportional to the sum of the squared covariances
of each variable to the speci�c factors for the other variables. It stands for the deviation of a solution
from the FA assumption that each of speci�c factors is speci�c to the corresponding variable.

5 Factor Scores as Higher Rank Approximation

The n � p matrix ZB 0 = F � 0+ S� was shown to be identi�ed in Section 3, while Z = [ F; S](n � (m + p))
cannot be identi�ed as found in (11). Their clear di�erence is in the numbers of columns and their ranks
with rank (Z ) = p + m > rank (ZB 0) = p = rank (X ): the rank of the factor score matrix Z is higher
than that of the data matrix X .

Di�erently from X and ZB 0, the two matrices XB and Z1 in (11) are n � (m + p) as is Z , and have
the following relationships to Z . First, XB is the target matrix approximated by Z , which is shown by
that Comp-FA loss function (7) can be rewritten as

f (Z; B ) = jjZ � XB jj2 + jjX jj2 + njjB jj2 � jj XB jj2 � n(p + m): (22)

In its right-side hand, only jjZ � XB jj2 is relevant to Z [2]. It shows that the resulting Ẑ is a higher
rank approximation of XB with rank (Z ) = p + m > rank (XB ) = p. Second, Ẑ is equidistant from
Z1 = X B̂L 1� � 1L 0

1 with
jj Ẑ � Z1jj2 = jjZ2jj2 = jjn1=2K 2L 0

2jj2 = nm (23)

[1]. Further, Z1 can be expressed as in the next theorem:

Theorem 5.1.
Z1 = X (X 0X ) � 1X 0Ẑ: (24)

Proof. We can rewrite (15) into S� 1
XX SXZ = B̂L 1� � 1L 0

1. Its use in (11), i.e., Z1 = X B̂L 1� � 1L 0
1 implies

(24).

This theorem shows that the columns ofZ1 are the projection of those ofẐ onto the column space
of X . Equations (23) and (24) allows us to draw the cone in Figure 1, where matrices are depicted as
arrows. This �gure shows that the matrix Ẑ = [ F̂ ; Ŝ] containing common and speci�c factor scores forms
the cone whose central axis isZ1 with the distance of Ẑ to Z1 being (nm)1=2. In other words, Ẑ exists
somewhere on the circumference of the circle whose center isZ1 and radius is (nm)1=2.

Theorem 5.2. It holds
X = ẐS0

XS = Ẑ (Ẑ 0Ẑ ) � 1Ẑ 0X (25)

Proof. Equation (21) implies X = ẐS0
XS = Ẑ (n� 1)Ẑ 0X . Here, we can use (6) to provide (25).
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This theorem shows that the column space ofX is included in that of Ẑ .

6 Comparisons to PCA

It can be considered that an established procedure should have clear relationships to a related one,
which may be principal component analysis (PCA) for FA. How PCA is similar to/di�erent from FA is
inconclusive in the prevalent framework of FA with (1), but is clari�ed by Comp-FA. The di�erence is
simply whether speci�c factors are considered: the loss function of PCA can be de�ned as

f P C (F; �) = jjX � F � 0jj2; (26)

by excluding the speci�c factor part S� from the Comp-FA loss function (7) [ 10].
We can further show clear inequalities holding between PCA and FA solutions, as shown below.

There, FF A and AF A are used for the FA solutions ofF and A, while FP C and AP C denote the PCA
ones with

1
n

F 0
P C FP C = I m (27)

which can be supposed without loss of generality.
In the next theorem, the fact is used that the resulting value of the PCA loss function (26) is expressed

as
jjX � FP C � 0

P C jj2 = ntr (SXX � tr � P C � 0
P C ): (28)

and [10] FA-like PCA is considered in which

g(S� ; � � ) = jjX � (FP C � 0
P C + S� � � )jj2 (29)

is minimized over S� and � � subject to

F 0
P C S� = Op� m ; n� 1S� 0

S� = I p; � � being diagonal: (30)

Theorem 6.1. The amount of residuals (28) for PCA cannot be less than that for FA (20):

tr (SXX � tr � P C � 0
P C ) � tr (SXX � � F A � 0

F A � �̂ 2) (31)

implying tr � P C � 0
P C � tr � F A � 0

F A + tr �̂ 2.
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Proof. As compared with PCA, EFA-like PCA has additional parameters S� and � � , which implies the
function (29) value cannot exceed (28):

ntr (SXX � tr � P C � 0
P C )jjX � (FP C � 0

P C + S� � � )jj2: (32)

Further, S� ; � � , and FP C with (27) and (30) can be substituted into S; � ; and F in (6), respectively:
S� ; � � ; and FP C meet the Comp-FA model (5) and (6), but they are not optimal and thus the (29) value
cannot be less than the Comp-FA loss function value (20):

jjX � (FP C � 0
P C + S� � � )jj2 � ntr (SXX � � F A � 0

F A � �̂ 2): (33)

Inequalities (32) and (33) imply (31).

The relationships of loadings between PCA and FA are shown next:

Theorem 6.2.
tr � F A � 0

F A � tr � P C � 0
P C (34)

Proof. Since the PCA solution minimizing (26) is known as the best lower rank approximation, the
resulting value of (26), i.e., (28) cannot exceedf P C (FF A ; � F A ) = jjX � FF A � 0

F A jj2, which is rewritten
using (10) asn(trS XX � 2trS XF � 0

F A � tr � F A � 0
F A ) = n(trS XX � tr � F A � 0

F A ). It is not less than (28),
which implies (34).

This theorem shows that the absolute values of PCA loadings tend to be larger than those of FA ones
for a data set.

7 Illustration

In order to illustrate Comp-FA and its properties discussed so far, we carried out Comp-FA for the
column-standardized version of Harman's [4] 12-observations� 5-variables socio-economic data matrix.
The resulting loadings in � and speci�cities in � 2 are shown in Table 1(A) together with DEE indicating
the diagonal elements of (17), i.e., the variances of the residuals. On the other hand, Table 1(B) and
(C) present the maximum likelihood solution for the prevalent FA model (1) and the PCA solution,
respectively. Every loading matrix � has been rotated by the varimax method. The loadings are mutually
similar among the three solutions and allow the equivalent interpretation of factors/components. Let us
compare Table 1(A) against (B) for the parameters other than �. For example, in (B), the uniqueness for
the variable employment is found to be 0.040. In this value, the speci�city and the amount of residuals
are compounded, while they are dissociated in (A) with their values 0.026 and 0.003, respectively. Such
a speci�city for each variable is not estimated in PCA without considering speci�c factors: only amounts
of the residuals remaining unexplained by components are given byDEE in (C). Comparing (A) and (C),
we can con�rm that the amounts of residuals and the absolute values of loadings for Comp-FA tend to be
smaller than those for PCA, which are suggested in Theorems 6.1 and 6.2, although exceptional values
are also found in Table1.

Table 1. Solutions of Comp-FA, Prevalent FA, and PCA for the socio-economic data.

Variable (A) Comp-FA (B) Prevalent FA (C) PCA
� � 2 D EE � 	 2 � D EE

Population 0.995 0.018 0.007 0.002 0.999 0.015 0.000 0.994 0.011 0.000
School 0.016 0.878 0.229 0.000 -0.003 0.900 0.190 -0.004 0.941 0.013
Employment 0.977 0.128 0.026 0.003 0.970 0.132 0.040 0.981 0.132 0.000
Services 0.425 0.787 0.200 0.000 0.427 0.796 0.184 0.451 0.823 0.014
House 0.002 0.983 0.033 0.001 0.008 0.960 0.078 -0.001 0.968 0.004

As shown in Theorem 3.3, the model-partẐ B̂ 0 is identi�able, which implies that the residual matrix
Ê = X � Ẑ B̂ 0 is also so. Table 2 presents the matriceŝZ B̂ 0 and Ê resulting in Comp-FA. The former

@COMPSTAT 2016



32 Comprehensive factor analysis

elements have a far larger variance than the latter ones, withkẐ B̂ 0k2 = 59:93 and kÊk2 = 0 :07 whose
sum equalskX k2 = 60. It shows that the Comp-FA model is �tted very well to the data set.

Table 3 shows the matrix SXS containing the covariances between observed variables and speci�c
factors. The squares of the diagonal elements in Table 3 equal to the speci�cities �2 in Table 1(A). As
explained in Section 4, the largeness of the o�-diagonal elements inSXS stands for the deviation of the
solution from the FA assumption that a speci�c factor is speci�c to the corresponding variable: the factor
is uncorrelated to the other variables. Since both variables and factors are standardized, the covariances
in Table 3 are also correlation coe�cients. It allows us to easily �nd that no o�-diagonal element shows a
substantially large correlation. We can thus ascertain that all observed variables meet the FA assumption
fairly well.

Table 2. Observation � variables matrices of the model-part and residuals.

Obs. (A) Model-part (B) Residuals
Po Sc En Se Ho Po Sc En Se Ho

1 -0.205 0.776 0.184 1.351 1.327 0.040 0.018 -0.044 0.005 -0.015
2 -1.525 -0.318 -1.532 -0.996 -1.147 -0.067 0.001 0.073 -0.011 -0.001
3 -0.896 -1.532 -1.086 -1.013 -1.323 0.033 -0.012 -0.036 0.005 0.010
4 -0.731 1.251 -0.544 0.176 1.322 -0.010 0.011 0.011 -0.002 -0.010
5 -0.714 0.789 -0.581 0.169 1.317 0.033 0.005 -0.036 0.006 -0.005
6 0.491 -1.833 0.338 -0.570 -0.822 0.104 -0.003 -0.113 0.017 0.002
7 -1.514 -0.013 -1.645 -1.006 -0.173 -0.017 -0.011 0.018 -0.002 0.009
8 0.914 0.034 0.764 -0.546 -0.491 -0.046 0.000 0.049 -0.006 -0.001
9 1.159 0.649 0.845 0.544 0.138 -0.048 -0.031 0.052 -0.006 0.027
10 1.032 1.346 1.052 2.449 1.289 -0.012 -0.026 0.014 -0.002 0.023
11 0.986 -1.076 0.85 -0.377 -0.82 0.033 0.000 -0.036 0.006 0.000
12 1.003 -0.071 1.355 -0.181 -0.616 -0.044 0.047 0.048 -0.009 -0.040

Table 3. Covariances between observed variables and speci�c factors (in bold).

Variable Speci�c Factor
Po Sc En Se Ho

Population1 0:081 -0.045 0.000 0.002 0.015
School -0.008 0:478 0.017 -0.007 0.000
Employment 0.000 0.049 0:162 -0.002 -0.016
Services 0.000 -0.007 -0.001 0:447 0.002
House -0.007 0.000 -0.014 0.006 0:181
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8 Conclusions

In this paper, we presented some mathematical results on the least squares solution for the comprehensive
factor analysis (Comp-FA) model X = F � 0 + S� + E, in which the speci�c factors in S are separated
from the unsystematic errors in E with the columns of [F; S] standardized and mutually orthogonal.

Main results for the solutions of F; � ; S; and � are as follows: the loadings in �, the speci�cities in
� 2, and the model part F � 0+ S� are identi�able and it is a linear combination of the columns in data
matrix X (Theorem 3.1 and Theorem 3.3), although the matrix [ F; S] containing common and speci�c
factors is not unique: its rank is higher than the data matrix X and the column space of [F; S] includes
that of X (Theorem 5.2).

COMPSTAT 2016 Proceedings



Kohei Adachi and Nickolay T. Trenda�lov 33

The identi�ability of the model part implies that of the residuals in Ê = X � F̂ �̂ 0 � Ŝ�̂ . The
results for Ê are summarized as follows: residuals are correlated among variables (Theorem4.1). The
residual for each variable is uncorrelated with common factors and the speci�c factor for that variable,
but correlated to the speci�c factors for the other variables (Theorem 4.2). The amount of residuals is
proportional to the sum of the squares of the covariances between each variable and the speci�c factors
for the other variables: the amount stands for the deviation from the FA assumption that a speci�c factor
is speci�c to each variable (Theorem4.4).

The Comp-FA model clari�es the relationships of FA to principal component analysis (PCA): the
incorporation of the speci�c factor part S� into PCA leads to FA. Owing to it, FA shows the better �t
to a data set than PCA, while PCA tend to provide the loadings of larger absolute values than FA, as
shown in Theorem6.1 and Theorem 6.2.
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Approximating the Rao's distance
between negative binomial
distributions. Application to counts
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Biologie et Ecologie des Organismes Aquatiques- BP 22 Nouadhibou Mauritania, saikoukide@gmail.com

Abstract. While the negative binomial distribution is widely used to model catches of animals, it is
noteworthy that the parametric approach is ill-suited from an exploratory point of view. Indeed, the
\visual" distance between parameters of several distributions is misleading, since on the one hand it
depends on the chosen parametrization and on the other hand these parameters are not commensurable
(i. e. they measure quite di�erent characteristics). Consequently, we settle the topic of comparing
abundance distributions in a well-suited framework: the Riemannian manifold NB (DR ) of negative
binomial distributions, equipped with the Fisher-Rao metrics. It is then possible to compute an intrinsic
distance between species. We focus on computational issues encountered in computing this distance
between marine species.

Keywords. Information geometry, abundance distributions, geodesic, cut point

1 Introduction

The statistical analysis of counts of living organisms brings information about the collective behavior
of species (schooling, habitat preference,etc), possibly associated with their biological characteristics
(growth rate, reproductive power, survival rate, etc). This task can be implemented in an exploratory
setting (see for instance [8, 7] and the references therein), but parametric distributions are also widely
used for modeling populations abundance. Thus, the negative binomial (NB) distribution is commonly
used to model catches of animals [2, 10, 12, 9].

This distribution is especially relevant for this purpose, because [9]:

1. it arises as a Gamma-Poisson mixture, whose parameters depend on the more or less aggregative
behavior of the species, and on the e�ciency of the trawl for catching it
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2. it arises as the limit distribution of the Kendall's [ 6] birth-and-death model; in this setting, the
parameters depend on the demography of the species (reproductive power, mortality, immigration
rate)

3. in addition, it is a natural model for collections (of animals, for instance).

But it is noteworthy that the parametric approach is ill-suited from an exploratory point of view: the
\visual" distance between parameters of several NB distributions is misleading, because on the one hand it
depends on the chosen parametrization and, on the other hand, these parameters are not commensurable
in general (they are associated with completely di�erent characteristics of the species, in the setting
of di�erent statistical models). Considering the Riemannian manifold NB (DR ) of negative binomial
distributions (NB) equipped with the Fisher-Rao metrics, we can compute intrinsic distances between
species, on the basis of their counts. Then, the \visual" distance between species approximated through
Multidimensional Scaling of the table of Rao's distances (for instance) is a sound dissimilarity measure
between species.

2 Notations

Consider a Riemannian manifoldM , and a parametric curve � : [a; b] ! M ; its �rst derivative with
respect to \time" will be denoted _� . A geodesic curve connecting two points p and q of M will be
alternatively denoted p y q, and p y q � q y r will denote the broken geodesic [1] connecting p to r
with a \stopover" at q. A probability distribution L i will be identi�ed with its coordinates with respect
to some chosen parametrization; for instance, we will writeL i �

�
� i ; � i

�
.

We also consider for anyx 2 M the local norm kVkg (x) associated with the metricsg on the tangent
spaceTx M :

8 V 2 Tx M ; kVkg (x) :=
p

V 0:g(x):V : (1)

Finally, the length of a curve � traced on M will be denoted � (� ).

3 The Rao's distance

In a seminal paper, Rao [11] noticed that, equipped with the Fisher information metrics denoted g(� ),
a family of probabilities depending on p parameters can be considered as ap-dimensional Riemannian
manifold. The associated Riemannian (Rao's) distance between the distributions with parameters� (1)

and � (2) is given by:

DR

�
� (1) ; � (2)

�
:=

Z 1

0

p
_ 0(t) :g( (t)) : _ (t)dt (2)

where  is a segment (minimal length curve) connecting � (1) =  (0) to � (2) =  (1). As any
Riemannian distance,DR is intrinsic (i.e. it is coordinates-free).

Riemannian geometry in a nutshell

De�nition 1.
[1] Consider the di�erentiable manifold M , and the setX (M ) of vector �elds on M . A linear connection
(or covariant derivative) D on M is a bilinear map

(
D : X (M ) � X (M ) ! X (M )
(X; Y ) 7! D X Y

which is linear in X and a derivation on Y.
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According to the fundamental theorem of Riemannian geometry [1], there is a unique symmetric
connectionr compatible with a �xed metrics g (the so-called Levi-Civita or Riemann connection), giving
in our case the Rao's distance.

De�nition 2.
[1, 5] Let  : [0; 1] ! M be a curve traced onM , and D be a connection onM .  is a geodesic with
respect to D if its acceleration D _ ( t ) _ (t) is null 8t 2 ]0; 1[. In other words, a geodesic has constant
speed in the local norm (1):

k _ kg := k _ (� )kg ( (� )) =
p

_ 0(� ) :g ( (� )) : _ (� ):

Corollary 1.
Let  : [0; 1] ! M be a geodesic, and[a; b] � [0; 1]. Then

Z b

a

p
_ 0(t) :g ( (t)) : _ (t)dt = ( b� a) k _ kg :

Geodesics on ap-dimensional Riemannian manifold with respect to r are solutions of the Euler-
Lagrange equation [5, 1, 3]:

8 1 � k � p; • k (t) +
pX

i;j =1

� k
i;j _ i (t) _ j (t) = 0 (3)

where each coe�cient of r (some \Christo�el symbol" � k
i;j ) only depends ong, and is de�ned in

coordinates by:

� k
i;j :=

pX

m =1

gim

2

�
@gmj

@�k
+

@gmk

@�j
�

@gjk

@�m

�
(4)

where gim (resp. gmk ) is some entry ofg� 1 (resp. g).
To determine the shortest curve between two points ofM , one applies the following result.

Lemma 1.
[5, 1] Let M be an abstract surface, andp; q 2 M . Suppose that� : [a; b] ! M is a curve of minimal
length connectingp to q. Then, � is a geodesic.

Nevertheless, building the segment connectingp to q is not straightforward, since the lemma above
only shows that a segment is a geodesic. But a geodesic is not necessarily a segment...

Theorem 1.
[1] Let p = � (0) be the initial point of a geodesic. Then there is some0 < t 0 � + 1 such that � is a
segment fromp to � (t) for every t � t0 and for t > t 0 thereafter never again a segment fromp to any
� (t) for t > t 0. This number t0 is called the cut value of� and � (t0) is called the cut point of � . There
are only two possible reasons (which can occur simultaneously) for� (t0) to be to be the cut point of� :

- there is a segment fromp to � (t0) di�erent from �
- � (t0) is the �rst conjugate point on � to p (i.e. t0 _� (0) is a critical point of the exponential map,

de�ned hereunder).

Remark 1.
No matter the cause of the phenomenon, the main point for us is that ift0 is a cut value of � , 8 t �
t0; DR (p; � (t)) = t while 8 t > t 0; DR (� (t0) ; � (t)) < t � t0.

De�nition 3.
[1] Let M be a Riemann manifold andx 2 M . The exponential map ofM at x is expx : Wx ! M ,
de�ned on some neighborhoodWx of 0 in the tangent spaceTx M by:

expx (V ) := � B(V ) (kVk)

where B (V ) is the projection of V onto the unit ball and � B(V ) is the unique geodesic inM such that
� B(V ) (0) = x and _� B(V ) (0) = B (V ).
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Remark 2.
If � := p y q is a segment andV0 := _� (0), because of uniqueness of geodesics,expp (V0) := � B(V0 ) (1) = q;
reciprocally, if V1 := _� (1), expq (V1) := � B(V1 ) (1) = p (compare Figures 1 & 2).

4 The geometry of NB (DR )

The most classical parametrization of the NB distribution is given by

P (X = j ; (�; p )) =
�

� + j � 1
j

�
p

j
(1 � p) � j � 0 (5)

with ( �; p ) 2 R+ � ]0; 1[; � is the index parameter (denotedk by [2] and many other authors). Nev-
ertheless, because of its orthogonality, we chose instead the parametrization used by Chua and Ong
[4]:

P (X = j ; (�; � )) =
�

� + j � 1
j

� �
�

� + �

� j �
1 �

�
� + �

� �

; j � 0 (6)

(�; � ) 2 R+ � R+ ; here, � is the mean of the distribution. In these coordinates, the information
matrix is:

g(�; � ) =
�

G�� 0
0 G��

�

with G�� = �
� ( � + � ) , while the expression ofG�� is more complicated:

G�� = �
� + � (� + � )

�
( � =� + � ) � � 1

�
 1(� )

� (� + � )
(7)

where  1 is the Trigamma function (�rst derivative of the logarithmic derivative of �( � )). One will
�nd in [ 3] the closed-form expression of the Rao's distance for a number of probability families. These
authors reported that when the index parameter of two NB distributions is the same the Rao's distance
is given, in the parametrization (5), by:

DNB (p)
��

�; p 1�
;
�
�; p 2��

:= 2
p

� arccos

 
1 �

p
p1 p2

p
(1 � p1) (1 � p2)

!

: (8)

Of course, if � 1 (resp. � 2 ) is the mean of L1 = NB
�
�; p 1

�
(resp. L2 = NB

�
�; p 2

�
), we have

necessarily:
DR

�
L1; L2�

� DNB (p)
�
L1; L2�

: (9)

Due to the complexity of (7), DR
�
L1; L2

�
cannot be obtained in a closed-form. It must be computed

by �nding the numerical solution of the Euler-Lagrange equation (3), completed in the parametrization
(6) by the boundary conditions

�
 (0) =

�
� 1; � 1�

;  (1) =
�
� 2; � 2�	

: (10)

Geodesics can be as well be computed by solving (3) under the alternative constraints

�
 (0) =

�
� 1; � 1�

; _ (0) = V2 R2	
: (11)

This solution is associated with the exponential map at
�
� 1; � 1

�
.
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5 Approximating DR
�
L1; L2

�

In this section, L i �
�
� i ; � i

�
denotes a NB distribution parametrized in the (6) system, but our purpose

could be extended to any parametric family.
Firstly, all the Christo�el symbols ( 4) were calculated from the expression (7) of G�� , with the help

of Mathematica. Then, the di�erential equation ( 3) was numerically solved under the the boundary
conditions (10), for the estimated parameters of a number of marine organisms. In most case a solution
could be found in an acceptable time (four CPU minutes, at most), with a good numerical precision (15
digits), but was each one of the geodesics found a segment? And what about failures in computation?
We indeed had to face two di�erent problems: a theoretical one and a computational one.

Theoretical issue

Suppose a solution = L1 y L2 of (3) under the boundary condition (10) has been found; according
to Corollary 1, a straightforward approximation of DR

�
L1; L2

�
should bek _ kg. But notice that k _ kg is

only an upper bound , which is attained only when there isno cut point in  ([0; 1]) (cf. Theorem 1).
That is why we need some test to detect a possible cut point on some geodesic curve (see Section5).
Suppose now a cut point

�
� c(1 ;2) ; � c(1 ;2)

�
has been detected on . Then, it is natural [ 1] to supersede

by the broken geodesic

�
� 1; � 1�

y
�

� c(1 ;2) ; � c(1 ;2)
�

�
�

� c(1 ;2) ; � c(1 ;2)
�

y
�
� 2; � 2�

whose length is shorter than� ( ), provided
�
� c(1 ;2) ; � c(1 ;2)

�
y

�
� 2; � 2

�
is also a segment.

Computational issues

Wet met various numerical problems in computing L1 y L2:

(P1) no solution was found (due to time limit, singularities, etc)

(P2) an unsuitable solution was found: for somet 2 [0; 1], (� (t) ; � (t)) =2 R+ � R+

(P3) the boundary condition (10) was not ful�lled with a satisfactory precision.

Simple con�gurations
When none of these issues is met, we �rst check that there is no cut point on . Then, the canonical

solution is acceptable, and we can write:

DR
�
L1; L2�

� � (  ) = k _ kg : (12)

If a cut point
�
� c(1 ;2) ; � c(1 ;2)

�
is detected on , and if

�
� c(1 ;2) ; � c(1 ;2)

�
y

�
� 2; � 2

�
is free of cut point,

we adopt as an upper bound forDR
�
L1; L2

�
:

�
� �

� 1; � 1�
y

�
� c(1 ;2) ; � c(1 ;2)

��
+ �

��
� c(1 ;2) ; � c(1 ;2)

�
y

�
� 2; � 2� �

:

Intricate con�gurations
When (P1) or (P2) is met, we consider that the best achievable solution would consist in breaking =

L1 y L2 by inserting a well-placed \stopover". But since  is undetermined, how should
�
� S(1 ;2) ; � S(1 ;2)

�

be chosen? We propose two heuristics for approaching :

1. compute a \rough solution" f R to the original problem, contenting ourselves with low-precision
(here: 5 digits), and substitute f R for  to search for

�
� S(1 ;2) ; � S(1 ;2)

�

2. when f R cannot be obtained, merely use insteadf L (t) := t
�
� 1; � 1

�
+ (1 � t)

�
� 2; � 2

�
.
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In the second case, after �xing a convenient sampling rate1
N , the stopover naturally corresponds to the

shortest broken geodesic:

( �
� S(1 ;2) ; � S(1 ;2)

�
= f L

� kL
N

�

kL := arg min
1� k � N � 1

�
�

��
� 1; � 1

�
y f L

�
k
N

��
+ �

�
f L

�
k
N

�
y

�
� 2; � 2

���
: (13)

In the �rst case two eventualities must be considered:

1. a cut point
�
� c(1 ;2) ; � c(1 ;2)

�
is detected on f R ([0; 1]); then

�
� S(1 ;2) ; � S(1 ;2)

�
=

�
� c(1 ;2) ; � c(1 ;2)

�

2. if no cut point is detected, proceed like in (13):

( �
� S(1 ;2) ; � S(1 ;2)

�
= f R

� kR
N

�

kR := arg min
1� k � N � 1

�
�

��
� 1; � 1

�
y f R

�
k
N

��
+ �

�
f R

�
k
N

�
y

�
� 2; � 2

���
: (14)

Boundary problems
(P3) is easy to solve, since it merely corresponds to (0) 6= L1 or  (1) 6= L2. We just have to add to

formulas (12), (13) or (14) the corrective boundary error term

BE ( ) :=

  (0) � L1




g

�
L1�

+

  (1) � L2




g

�
L2�

(15)

given by formula (1). Finally, we can write:

DR
�
L1; L2�

� � (  ) + BE ( ) (16)

whatever the selected geodesic (broken, or not) may be.

Locating a (N; � )- cut point on some geodesic 

For that purpose, the unit interval is �rst divided into N intervals: [0; 1] =
S N

i =1 � i , with � i := [ i � 1
N ; i

N [.
Suppose there exists a cut point (tc) on  , such that tc 2 � i c . Consider the set

CN ( ) :=
�

 1 := 
�

1
N

�
; � � � ;  k := 

�
k
N

�
; � � � ;  N � 1 := 

�
N � 1

N

��
� M

and, for each 1� i � N the geodesic� i :=  i � 1 y  i obtained by solving (3) under the constraints

f � i (0) =  i � 1; � i (1) =  i g:

Because of the uniqueness of segments, Corollary1 and Remark 1, 8 i < i c;
k _ kg

N = � ( � i ) = k _� i kg .

On the contrary, when i � i c, the distance between i � 1 and  i along  is
k _ kg

N yet, while k _� i kg should
be smaller. More precisely, if the resolution 1

N is small enough (for instance, smaller than the injectivity
radius [1] of M ),  i � 1 y  i is a segment and we may write:

(
8 i < i c;

k _ kg

N � k _� i kg = 0

8 i � i c;
k _ kg

N � k _� i kg > 0:

Thus, after �xing � (small), we can locate possible cut points, with a precision depending on (N; � ).

De�nition 4.
We will say that  i c 2 CN ( ) is a (N; � )- cut point on  if

i c = arg min
1� i � N � 1

� �
�
�
�
k _ kg

N
� k _� i kg

�
�
�
� > �

�
:

COMPSTAT 2016 Proceedings



Claude Mant�e and Saikou Oumar Kid�e 43

6 The MEEZ data

The Mauritanian coast, situated on the Atlantic side of the northwestern African continent, embeds a
wide long continental shelf of about 750km and 36000km2 with an Exclusive Economic Zone (MEEZ)
of 230000km2. This study focuses on the analysis of abundance of �sh and invertebrates data collected
during annual scienti�c trawl surveys performed by oceanographic vessels on the continental shelf (< 200
m depth), from 1987 to 2010. All the species (�sh and invertebrate) captured in a given station were
identi�ed, counted and then recorded on the database. In addition, each station has been characterized
by supplementary environmental variables: bathymetry, sedimentary type of the substrate, latitude and
longitude. The counts of species collected were then �tted by NB distributions. For that purpose, it
was necessary to determine homogeneous regions (habitats) in the MEEZ; it was found that the optimal
number of habitats is four. Then the counts of each species were separately �tted in each one of these
regions, and it was observed that in each one of the habitats, only a reduced number of species could
be satisfactorily �tted by some NB distribution; other species were discarded. For further details on the
data or estimation methods, see [9, 7].

7 Results

Geodesics: a bestiary

We illustrate hereunder the diversity of cases encountered in computingDR (A; B ). From now, the
approximation parameter are �xed to ( N; � ) = (10 ; 0:01) : All the �gures displayed will be composed
of three panels. On the left one, we superimposed the �nal solution to the rough geodesic (when
it could be computed). On both the other panels, we investigated the structure of broken geodesics
in the neighborhood of a stopoverS, with the help of the exponential map. We determined �rst
 1 = A y S (resp.  2 = B y S) by solving equation (3) under the constraints (10). We after-
ward consideredf Vi (� k ) := � (� k ) � B ( _ i (0)) : i = 1 ; 2g, where the angle of the rotation � is (in degrees)
� k 2 f 0; � 0:1; � 0:2; � 0:3g. Equation (3) was then solved under the constraints (11) with V = Vi (� k ),
giving rise to two bundles of seven geodesics; remember that for� = 0, expA (V1 (0)) = S = expB (V2 (0))
(see Remark2). In all these plots, the red point will be \A" and the black one will be \B", while the
stopover is represented by the big gray point.

On Figure 1, we represented the geodesic 1 := A y B , with A � (0:7767; 11:2078) and B �
(0:7767; 87:268) in the system (6). It corresponds to a simple con�guration: no (N; � )- cut point was
found, and we can see on the left panel that there is practically no di�erence between the segment and
the sampled rough geodesic. We stress that the stopoverS is in this case quite unnecessary; it was
introduced only for illustration. On the central panel, the segment A y S has been extrapolated with
the exponential map, as well as the other geodesics of the bundle. On the right panel the segmentB y S
and the corresponding bundle of geodesics have been extrapolated in the same way. We can see that there
is practically no di�erence between extrapolations of A y S and B y S, the segment 1 and the rough
geodesic g 1;R . Notice �nally that in this (arti�cial) case, the distance DNB (p) (8) given by [3] can be
computed. In the (5) system, A � (0:7767; 0:935191),B � (0:7767; 0:991178) and we have, in compliance
with ( 9):

1:7 � DR (A; B ) < D NB (p) (A; B ) = 1 :783:

On Figure 2, we plotted geodesics connecting two species:Rhizoprionodon acutus, coded RIAC70,
and Anguilla sp, coded ANSP50. Even ifRIAC 70 y ANSP 50 could not be determined, the rough
geodesicf R could be computed. A (N; � )- cut point was detected in the second position of the sampled
curve, and used as a stopoverS to compute the �nal broken segment. But we can see of the central and
the right panels that neither A y S nor B y S could be extrapolated to obtain a geodesic connectingA
to B .
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Figure 1. A geodesic without any cut point
�

gDR � 1:70 � DR

�
. Left panel: the rough geodesic

(cyan suits) is superimposed to the segment; A is the red point, B the black one and the stopover
is represented by the gray point. Right panels: plot of the two bundles of geodesics issued from
A or B. Red curve: � = 0; dashed curves: � 6= 0. The header corresponds to the parameters of
the distributions.

Figure 2. A geodesic with a cut point; gDR (RIAC 70; ANSP 50) � 3:98 and
DR (ANSP 50; RIAC 70) � 3:90. Same graphical conventions as in Figure1.
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Figure 3. A broken geodesic between two species;DR (HISP 00; SCAN 40) � 29:62. Same
graphical conventions as in Figure1.

Figure 4. A broken geodesic between two species;DR (HISP 00; TRTR20) � 30:60. Same
graphical conventions as in Figure1.

Now, what about the worst cases, when linear interpolation was unavoidable? There were 4 such
pairs of species in the habitatC4 (see Table1). Notice �rst that all these pairs were associated with
a particular species, of parameters (317:85; 0:954874): this is Hippocampus sp, coded HISP00, the less
aggregative species in this habitat.

Let us start with f HISP 00; SCAN 40g, whose processing is represented on Figure3 (SCAN40 is the
code ofScorpaena angolensis). In this case, neither of the geodesics could be computed, and we used in
last resort linear interpolation in the space of parameters. The obtained curve is rather smooth, and one
could probably �nd a genuine segment close to this broken geodesic, with enough computation time.

Another example: DR (HISP 00; TRTR20), where TRTR20 is the code ofTrachurus trecae. This
case, displayed on Figure4, is quite di�erent: the structure of the geodesics near the stopoverS looks
like the structure of geodesics in the neighborhood of a cut point (see Figure2). But notice S was found
by traveling across f L (� ), and one cannot claim it is a realistic �rst guess for HISP 00 y TRTR20.
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Return to the exploratory setting

Remember that the MEEZ could be split into four homogeneous regions (see Section6), namedf C1; � � � ; C4g.
From the estimates of the parameters of theNh species kept inCh , it is possible to tabulate the Rao's dis-
tance between species and process the resulting table with methods designed for non-Euclidean distances
(Multidimensional Scaling, Isomap, etc), as proposed by Rao [11] himself. Because of the computational
cost of Rao's distances, we were forced to select, for each habitat, a sub-sample of species representing
as well as possible the whole (landmark species, say). Thus, inC4 (like in other habitats), species were
�rst split into two categories: very aggregative and moderately aggregative. We focused on the second
category, keeping for computation the 30-species set (amongst the 121 species correctly �tted, while 301
species were observed) obtained by gathering isolated species and species constituting the vertices of the
convex envelope of non-isolated species (see Figure 6 of [9]).

Global statistics

It is interesting to tally the various con�gurations encountered in di�erent habitats: simple or intricate,
and the presence of possible (N; � )-cut points on the obtained geodesics. In the intricate case, it is
also interesting to tally the cases where linear interpolation was unavoidable. The obtained results are
gathered in Table 1. More than 70% of the con�gurations (88% in C4) were simple (i.e. the canonical
solution was accepted), and (N; � )- cut points were quite rare. In the intricate cases, the rough solution
was generally accepted (more than 90% of the cases). We can thus claim that the obtained upper bounds
given by Formula(16) were mostly tight approximations of true Rao's distance.

Table 1. Global results obtained in the four habitats of the MEEZ

Habitat Number of species Simple Intricate Cut points
(well-�tted) con�gurations (Rough, Linear)

C1 30 356 (75,4) 1
C2 19 124 (46,1) 2
C3 26 227 (88,10) 1
C4 26 288 (33,4) 1
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Abstract. Many studies carried out in the French electricity company EDF are based on the analysis of
the total electricity consumption curves of groups of customers. These aggregated electricity consumption
curves are estimated by using samples of thousands of curves measured at a small time step and collected
according to a sampling design. Small area estimation is very usual in survey sampling. It is often
addressed by using implicit or explicit domain models between the interest variable and the auxiliary
variables. The goal here is to estimate totals of electricity consumption curves over domains or areas.
Three approaches are compared: the �rst one consists in modeling the functional principal scores with
linear mixed models. The second method consists in using functional linear regression models and the
third method which is mon-parametric is based on regression trees for functional data. These methods
are evaluated on a dataset of French consumption curves.

Keywords. big data, energy, functional data, functional principal component analysis, mixed models,
regression trees.

1 Introduction and context

Many studies carried out by the EDF company are based on the analysis of the total or the mean
electricity consumption of groups of clients sharing some common characteristics. In what follows, these
groups will be called domains. In particular, there is a growing need to estimate the mean electricity
consumption curves for small geographic areas such as regions, cities or districts, ... in order to create
new services for local authorities.

The individual electricity consumption is recorded by means of smart meters at a very �ne time scale
(often half-hourly). In view of this new setting, the relevant variables, such as the consumption curve,
may be considered as realizations of functional variables depending on a continuous time indext that is
in the [0; T] rather than as multivariate vectors. Totals or means of the consumption curves are estimated
by using a sample of thousands of individuals selected from the whole population of EDF customers. The



50 Small area estimation for electricity consumption curves

total or mean curve estimation under various sampling designs and estimators as well as the construction
of con�dence bands have been addressed in the recent works of [5], [6] and [7].

We are concerned here with the small area estimation in a functional context. Small area estimation
is very common in surveys and many authors have addressed this issue in a non-functional setting. The
very recent book of [9] gives a thorough review of the existing methods. When the domain of interest is
small, the direct estimators which are built only on the individuals belonging to the domain are not very
e�cient. To improve the results, auxiliary information is used and estimators are built using an implicit
or explicit modeling of the link between quantities of interest and the auxiliary information.

Many auxiliary variables are available at the EDF company and some of them, such as the billing
information, may be known both at the unit and the domain levels. This information will be used to build
models in order to enhance the estimations and also to provide reasonable estimations for non-sampled
domains (e.g domains with no units in the sample). Note that we consider here only multivariate auxiliary
information which do not depend on time.

In this paper, we compare three methods to estimate mean curves over domains: linear mixed models
combined with principal components analysis, functional linear regression implemented using the cali-
bration algorithm according to the idea given by [1] and a non-parametric approach based on regression
trees for functional data.

The paper is organized as follows: in Section 2, we introduce some notations and hypotheses about
the survey sampling framework, de�nition of the domains and auxiliary information. We present, in
Section 3, three estimation methods and we compare in Section 4 the proposed estimators on a French
consumption curve dataset. Section 5 sums up our conclusions.

2 Notations and framework

In this section we introduce some notations about survey sampling framework, domains de�nition, aux-
iliary information and functional data.

Let U be a population of interest of known sizeN . To each unit i of the population a (load) curve
de�ned over a time interval [0; T] is associated: for each uniti we have a function of timeyi (t); t 2 [0; T],
where the continuous indext represents time. In practice, the curves are not observed continuously for
t 2 [0; T] but only for a set V of measurement instants 0 =t1 < t 2 < ::: < t v = T which are supposed to
be the same for all units and equispaced. We also assume that there are no missing values.

The population U is decomposed intoD disjointed domains Ud of known sizesNd; d = 1 ; :::; D . Our
goal is to estimate the mean curve� d over each domain, i.e.

� d(t) =
1

Nd

X

i 2 Ud

yi (t); t 2 [0; T]: (1)

Let 1d;i = 1 Ud ( i ) denote the indicator equal to one if the unit i belongs to domaind and zero otherwise.
Let d(i ) be the domain to which unit i belongs.

Let X i denote an auxiliary information vector known for each unit i 2 U and let Zd( i ) denote an
additional auxiliary information vector, known only at the domain level. In order to apply linear methods
easily, this information is grouped into a single vectorX �

i = ( X i ; Zd( i ) ). Let �X �
d be the mean of variables

X �
i over the domain d. For sake of simplicity, only multivariate variables which do not vary over time

are considered.
Let us consider the following functional superpopulation model between the interest variabley and

the auxiliary variable X �
i :

yi (t) = f d( i ) (X
�
i ; t) + � i (t); i 2 Ud; t 2 [0; T] (2)

where f d( i ) is an unknown regression function to be estimated, which may vary from one domain to
another, and � i (t) is a zero mean noise process.
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From the population U; a random samples of size n is drawn using a probability sampling design
assumed to be non-informative, meaning that the selection of the individuals is not depending on the
values ofy: Let sd be the intersection of the domainUd and the samples and nd be the size ofsd. The
domain sizend can be equal to zero for one or more domains. In practice, data collection must often
respect strong technical constraints and sometimes its main purpose is non statistical (technical tests
or power grid management), so it is often hard to consider that the sample has been drawn according
to a proper sampling design. For this reason, we use model-based inference rather than design-based
inference.

In order to assess the performances of our methods, we use as a benchmark the model

yi (t) = � d( i ) (t) + � i (t); 8i 2 Ud; (3)

with � i a noise process with mean zero. The mean load curve estimator under this model is the mean of

the curves belonging tosd, i.e. �̂ 0
d(t) =

P
i 2 sd

yi (t)

nd
. Obviously, this estimator can not be calculated for

non-sampled domains (i.e.nd = 0) and moreover it is extremely unstable for small domain sample sizes.

3 Estimation methods

In this section, we present three approaches for estimating the domain mean curve: linear mixed model
on principal component scores, functional linear regression models and regression trees adapted to curves.

Linear mixed model on principal component scores

In this section, we adapt the unit level linear mixed models frequently used in small area estimation.
Our solution consists in using a functional Principal Component Analysis (PCA) in order to transform
our curve estimation problem into a multivariate one. More precisely, we perform a functional principal
components analysis (see [10]) and we decompose the curveyi into the space spanned by the �rst K
principal components following the Karhunen-Loeve expansion:

yi (t) = � (t) +
KX

k=1

f k;i � k (t) + � i (t); i 2 U; (4)

where � k (t) denotes the functional principal componentk; k = 1 ; : : : ; K; � i (t) the reminder term and f k;i

the score of unit i on componentk.4 Using (4), the domain mean� d can then be approximated as follows

� d(t) ' � (t) +
KX

k=1

 
1

Nd

X

i 2 Ud

f k;i

!

� k (t):

The functional principal components � k (t) are unknown and they can be estimated by�̂ k (t) as suggested
in [4]. Thus, to estimate � d; we need to estimate� and the mean of principal scores over the domain

d; i.e. f k;d =
1

Nd

X

i 2 Ud

f k;i : Let consider for that the following unit level linear mixed model on f k;i ,

k = 1 ; : : : ; K as in [9]:
f k;i = � 0

k X �
i + uk;d ( i ) + � k;i ; 8i 2 Ud;

where � 0
k X �

i is the (functional) �xed e�ect of the auxiliary information, uk;d ( i ) the (functional) random
e�ect of the domain d(i ) distributed normally with mean 0 and variance � 2

d;k and � k;i the residual

4Here, the PCA is not used as a dimension reduction method but only in order to transform our problem into
uncorrelated mean of real variables estimation problems so we keep a numberK of principal components as large
as possible.
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distributed normally with mean 0 and variance � 2
�;k : This model is a parametric case of the general

model considered in (2). Using the same lines as in [9], Chapter 7, we estimate� k by EBLUP (Empirical

Best Linear Unbiased Prediction) and deduce then the estimatorbf k;d of f k;d : Finally, the mean � d is
estimated by

�̂ d(t) = �̂ (t) +
KX

k=1

bf k;d �̂ k (t); (5)

with �̂ (t) the sample mean and�̂ k (t) the estimated principal component, k = 1 ; : : : ; K .

Functional linear regression estimator

In this section, we assume that the following superpopulation model holds for the entire population:

yi (t) = � (t) + � (t)X �
i + � i (t); 8i 2 U; (6)

with � i a noise process with mean zero.
It is the same model as before but without random e�ects: it is therefore assumed that, conditionally

to the auxiliary information, the distribution of curves y(t) is the same over all the domains (with no
area-speci�c e�ects to be taken into account). We are in the usual context of functional regression
(regression of a functional variable on real explanatory variables). This problem can easily be addressed
by projecting the curves on an adapted basis (for example the principal components basis as before or
B-splines). By discretizing the curves over theV measurement instants and then �tting an Ordinary
Least Square estimator for each instant, we build the following estimator

�̂ d(t) = �̂ (t) + �̂ (t) �X �
d ; (7)

with �̂ (t) and �̂ (t) the Ordinary Least Square parameters estimated over the whole sample.

The estimation of this functional model can be computationally heavy for large datasets (many
domains or many measures for each curve) so we follow the approach proposed by [1] to compute our
domain mean curve estimators: under the model-assisted framework, the author proposes to estimate
quickly many domain totals using a Generalized Regression Estimator (see [11]) by remarking that, as
proved in [8], this estimator is equal to the calibration estimator so we can estimate multiple totals by
only calculating an unique weight vector for each domain. In addition to that, our regression estimator
(for one principal component or one basis vector) is equal to the Generalized Regression Estimator for the
Simple Random Sampling (with modi�ed weights). Following this idea, we can implement our estimators
by only calculating an unique weight vector for each domain and using a projection of our curves on the
basis of our choice.

Regression tree for functional data (Courbotree)

In this section, we propose to predict the curve of each non-sampled unit and then, to derive the estimator
of the domain mean curve as follows (see [13]):

�̂ d(t) =
1

Nd

 
X

i 2 sd

yi (t) +
X

i 2 Ud � sd

ŷi (t)

!

: (8)

In order to compute the prediction ŷi (t) for each unit i 2 Ud � sd; we use a regression tree approach. This
approach, as suggested by [3], is a nonparametric method consisting in splitting iteratively the dataset
into two parts until obtaining classes such as the dependent variableyi is as homogeneous as possible
within each class according to some criterion. In order to do that, we use the auxiliary informationX i

supposed to be known for each uniti from the population U and the homogeneity criterion is based on
the Euclidean norm (we use the "courboTree" approach as in [12]).
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Finally, the prediction ŷi (t) for each unit i 2 Ud � sd is given by the mean of the consumption curves
for the individuals that belong to the same class asi:

In practice, as the levels of the consumption curves are extremely various, the regression tree performs
badly on raw curves so we must pre-process the data: we divide each curve by a level proxy (for example
the consumption over the previous year) and in a post-processing step we multiply the estimated curve
by this proxy level. Moreover, we recommend to smooth the curve in the preprocessing step (using a
mobile average of order 5).

4 An illustration on a real dataset

We have applied the methods presented previously on a real load curves dataset in order to assess their
performances and to compare the ability of these methods to give good estimations.

Description of the data set

The test population consists in 1904 consumption curves of French households recorded at a daily time
step from October 2011 to March 2012 (177 points) with no missing values. This population is formed
by eight domains, corresponding to geographic areas.

For each unit of the test population, we have the following auxiliary information: contract power,
tari� option and consumption over the previous year. For each domain, we know the electric heating rate
and the mean surface of the housing.

Test protocol

In order to assess the quality of our estimators, we draw a large numberB = 2000 of random samples
of consumption curves and, on each sample, we estimate the domain mean curve by using the suggested
estimators. Then we build quality indicators to compare the estimated mean curves to the real ones.

In our simulations, the 8th domain is always non-sampled (in order to assess the quality of the methods
for non-sampled domains). For each simulation, we use a simple random sampling to draw 200 units from
the 7 sampled domains.

Quality indicators

We build separate quality indicators on sampled and non-sampled domains. LetYd(t) be the mean
curve of domain d at time t and Ŷd(t) be its estimate for a given method. We denote byEMC [Ŷd(t)] =
1
B

P B
b=1 Ŷd

b
(t) the Monte Carlo expectation of estimate Ŷd(t) with Ŷd

b
(t) the mean load curve obtained

on the sample selected in the runb, with b = 1 ; :::; B .
For given domain d and time t we de�ne the following Relative Bias indicator as

RB (Ŷd(t)) = 100
jEMC [Ŷd(t)] � Yd(t)j

Yd(t)
: (9)

Then, for a given domain d and time t; we de�ne the following Mean Square Error indicator as

MSE MC (Ŷd(t)) =
1
B

BX

b=1

(Ŷd
b
(t) � Yd(t))2: (10)

This indicator is the sum of the square bias and the variance. Estimators showing the smallest MSE
are preferred. In order to facilitate the comparison between estimators, we used a derived measure, easier
to read, named Relative E�ciency, obtained by dividing the mean of the MSE of an estimator for a given
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domain by the mean of the MSE for the benchmark estimator (the sample mean for the same domain,
see Eq. (3)): 5

RE (Ŷd(t)) = 100
MSE MC (t)( Ŷd(t))

MSE MC (Ŷd(t)REF )
: (11)

We consider the mean of each indicator over all the instants.

Results

Sampled domains Non-sampled domains

Method RB (%) RE(%) RB (%) RE (%) time (s)

Benchmark 0.28 100 0.07

PCA + LMM 0.52 20.98 5.1 200 0.53

Discretization + LMM 0.28 25.82 5.3 409 4.16

Functional regression 0.49 29 5.5 403 0.05

Courbotree 1.47 30.22 4.1 39 0.2

Table 1. Comparison of the methods, LMM stands for Linear Mixed Model

As suggested, the linear mixed model was applied on principal component scores (PCA + LMM) or
directly on the discretized curves (Discretization + LMM). The benchmark is the sample mean for each
domain (see Eq. (3)).

These tests showed that the integration of auxiliary information in domain mean curve estimations
leads to substantial precision gains on our dataset. On sampled domains, the best results are obtained
for the linear mixed models on principal components estimator (RE: 21%) or on discretized curves (RE:
26%), followed by functional linear regression (RE: 29%) and �nally "courboTree"(regression trees for
curves). The relative bias measures of the three methods are very small (less than one percent) on sampled
domains so the proposed methods have an e�ect on variance reduction rather on the bias reduction. The
use of the Principal Component Analysis in combination to the linear mixed model leads to a precision
gain of a few percents.

On non-sampled domains, the most e�cient technique is the courboTree followed by the linear mixed
model on Principal Components and then the functional linear regression6. The relative biases of all the
methods are moderate.

On our dataset, calculation times are very small: a few seconds for linear mixed models (ten times
less when we use a PCA), twenty times less for regression trees and a hundred times less for functional
linear regression.

5 Conclusions and perspectives

We have proposed three methods to address the problem of estimating mean load curves of small areas
by sampling using auxiliary information available at the unit and area levels. These methods have been
tested and compared to each other on real datasets and have been shown to lead to substantial precision
gains compared to simple domain means.

5For the non-sampled domain, this MSE does not exist so we divide the MSE by the mean MSE over all the
domains for the benchmark method.

6Direct estimations are impossible on non-sampled domains so the RE is the ratio of the MSE for the given
estimator divided by the mean of the MSE for the benchmark estimator over sampled domains.
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This work can be continued by building more e�cient estimators or by robustifying the previous
methods. Finally, regression trees modelling can be enhanced by replacing simple mean by functional
regression on area-level auxiliary information in each leaf of the tree in order to take this information
into account.

Acknowledgements : Authors wish to thank the two anonymous referees for their constructives
remarks which helped us to improve much the presentation of the paper.
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Coping with level and di�erent type
of contamination by SW-estimator
Jan �Amos V���sek, Charles University in Prague, visek@fsv.cuni.cz

Abstract. A new estimator inheriting (hopefully) pros and removing cons of the S-estimator and the
least weighted squaresis proposed. It allows for both, a weight function w as well as for an objective
function � which need not be bounded. The conditions for consistency and asymptotic representation are
recalled. The combination of the weight function with the objective function allows to accommodate the
estimator to the level and di�erent type of contamination. The results of simulation studies con�rm it.

Keywords. Robust regression,S-estimator, the least weighted squares,SW-estimator, consistency,
asymptotic representation, simulation results.

1 Introduction

Although Siegel'srepeated median[13] ended the pursuit for 50% breakdown point estimator of regression
coe�cients (which was launched by Bickel [1]), its complexity hampers implementation except for the
simple regression. Rousseeuw'sleast median of squares(�̂ (LMS;n;h ) ) [11] and the least trimmed squares
(�̂ (LT S;n;h ) ) [6] fortunately arrived soon after it and they ful�lled what we had expected. But the pres-
ence of order statistics of squared residuals in the de�nitions of both of them indicated that the study
of their asymptotics could be complicated7. The S-estimator (�̂ (S;n;� ) ) by Rousseeuw and Yohai [12]
have got rid of this disadvantage and in fact it allowed, by employing results from [10], an immediate
proof of its consistency. Another advantage appeared a bit later. In 1992 Hettmansperger and Sheater's
study of Engine Knock Data [8] revealed theswitch e�ect caused by zero-one objective function8. Then
the utilization of a continuous objective function (as the S-estimator had done it) proved to be a step
in the proper direction, just removing the switch e�ect (the danger of switch e�ect was, all after, in-
dicated already in [9]). On the other hand, removing the order statistics of squared residuals from the
de�nition of S-estimator brought unfortunately also an unintended negative consequence. By focusing on
minimization of estimate of variance of error terms - it (potentially) loses some information of inuential
observations, see the results of simulations at the end of paper.

The least weighted squares(�̂ (LW S;n;w ) ) [16] set o� in the same direction as �̂ (S;n;� ) , employing a contin-
uous weight function9 but it did not remove from the de�nition the order statistics of squared residuals.
Although it preserved the technical problems when carrying out the theoretical studies, it proved to be

7 It con�rmed the fact that we waited 20 years for the proof of consistency of LTS for multiple regression, [ 17].
8The results by Hettmansperger and Sheater were wrong (due to the use of a bad algorithm for �̂ ( LMS;n;h ) ,

see [2]) but �̂ ( LT S;n;h ) can be computed exactly for this dataset and it exhibited correctly the switch e�ect . At the
�rst glance it seemed that it is a consequence of the high breakdown point of �̂ ( LT S;n;h ) , for a �gure indicating
it see [18], but as n = 16 and h = 11, the breakdown point of �̂ ( LT S;n;h ) is approximately only 30%. In fact for
these data the switch e�ect was implied by zero-one objective function.

9The experiences from simulations hint that the weight function w should resemble the \left wing" of Tukey's
function � for �̂ ( LW S;n;w ) .
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pro�table from the e�ciency point of view in the applications. The technical problems have been later
solved by the generalization of Kolmogorov-Smirnov result [20].

It is easy to learn that �̂ (LW S;n;w ) is not a special case of̂� (S;n;� ) and vice versa, see [21]. Then it is a
straightforward step to combine these two estimators and obtain an estimator - theS-weighted estima-
tor (�̂ (SW;n;w;� ) ) (hopefully) inheriting pros and removing cons of the both parents. The present paper
summarizes the up-to-now-reached theoretical results on̂� (SW;n;w;� ) and it o�ers the simulation results
indicating that it can be adjusted not only to the level of contamination but also tailored to the di�erent
type of contamination.

2 Framework, assumptions and estimator

Let N denote the set of all positive integers,R the real line and Rp the p-dimensional Euclidean space.
All vectors will be assumed to be column and throughout the paper we assume that all r.v.'s are de�ned
on a basic probability space (
 ; A ; P), say. For a sequence of (p+1)-dimensional random variables (r. v.'s)
f (X 0

i ; ei )g
1
i =1 , for any n 2 N and a �xed � 0 2 Rp the linear regression model will be considered

Yi = X 0
i �

0 + ei ; i = 1 ; 2; :::; n or Y = X� 0 + e (1)

where Y = ( Y1; Y2; :::; Yn )0; X = ( X 1; X 2; :::; X n )0 and e = ( e1; e2; :::; en )0. Finally, we are going to
make the following assumptions on the explanatory variables and the error terms (allowing generally for
intercept amd discrete variables).

Conditions C1 The sequencef (V 0
i ; ei )0g1

i =1 is sequence of independentp-dimensional random variables
distributed according to the distribution functions (d. f.) FV;e i (v; r ) = FV (v) � Fe(� i � r ); i 2 N where
FV;e(v; r ) is a parent d. f., IEV 1 = 0 , the covariance matrix IE f V1V 0

1g is regular, IEe i = 0 and � 2
i = var ( ei )

with 0 < s < lim inf
i !1

� i � lim sup
i !1

� i< S < 1 . There is `; 0 � ` < p and coordinatesV11; V12; :::; V1` of

the vector V1 are discrete with the distribution given byf p1;v = P(V11 = v1; V12 = v2; :::; V1` = v` )gf v2Ug

where U � T and T � R` is a compact. Further, the d. f. of the vector (V1;` +1 ; V1;` +2 ; :::; V1;p� 1)0

is absolutely continuous, the densityf V1;` +1 ;V1;` +2 ;:::;V 1;p � 1 (v) is bounded byBe. Similarly, the parent
d. f. Fe(r ) is absolutely continuous with densityf e(r ) bounded byUe. Moreover, there is q > 1 so that
IE kV1k2q < 1 . Finally, consider the sequencef (X 0

i ; ei )0g1
i =1 where X i 1 = 1 and X ij = Vi;j � 1; j =

2; 3; :::; p for all i 2 N . This sequence will be considered as the sequence of explanatory variables and of
error term.

Conditions C2

� w : [0; 1] ! [0; 1] is a continuous, non-increasing weight function with w(0) = 1 . Moreover,
w is Lipschitz in absolute value, i. e. there isL such that for any pair u1; u2 2 [0; 1] we have
jw(u1) � w(u2)j � L � ju1 � u2j :

� � : (0; 1 ) ! (0; 1 ), � (0) = 0 , non-decreasing on(0; 1 ), symmetric and di�erentiable (denote
the derivative by ).

�  (r )=r is non-increasing for r � 0 with lim r ! 0+

 ( r )
r = 1 .

De�nition 2.1. Let w : [0; 1] ! [0; 1] and � : [0; 1 ] ! [0; 1 ] be a weight function and an objective
function, respectively. Then

�̂ (SW;n;w;� ) = arg min
� 2 R p

(

� (� ) 2 R+ :
1
n

nX

i =1

w
�

i � 1
n

�
�

�
r ( i ) (� )

�

�
= b

)

(2)

whereb = IE
n

w
�

F
�

ei
� 0

��
� ( e2

1
� 2

0
)
o

with F being the parent distribution function, is called the S-weighted

estimator, see V���sek (2015a).
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Remark. It is clear that LMS, LTS, LWS and S-estimators are special cases of theS-weighted
estimator.

Following Rousseeuw& Yohai [12] we can argue that theS-weighted estimator is given by � 2 Rp such

that � (� ) in ( 2) is minimal, i. e. �̂ (�̂ (SW;n;w;� ) ) = min
� 2 R p

� (� ) and hence for all � 2 Rp

1
n

nX

i =1

w
�

i � 1
n

�
�

�
r ( i ) (� )

�̂

�
� b: (3)

If the opposite sharp inequality takes place for some� 2 RP , the continuity of weight function w and
of objective function � allows to decrease value of� so that the required equality still holds. On the
other hand, the left-hand-side in (3) attains value b for � = �̂ (SW;n;w;� ) and it is the minimum for this
expression. Hence all partial derivative have to be zero, i. e. thenormal equations

nX

i =1

w
�

i � 1
n

�
X j i  

�
Yj i � X 0

j i
�

�̂

�
= 0 (4)

have to be ful�lled (where  = � 0) and j i is a such index that r 2
j i

(� ) = r 2
( i ) (� ). Putting

� (�; j ) = i 2 f 1; 2; :::; ng , r 2
j (� ) = r 2

( i ) (� ) (5)

and we arrive at
nX

j =1

w
�

� (�; j ) � 1
n

�
X j  

�
Yj � X 0

j �

�̂

�
= 0 (6)

(notice that � (�; j ) depends also on! 2 
). Denoting the indicator of the set A as I f Ag, the empirical
distribution of the absolute values of residuals is given as

F (n )
� (r ) =

1
n

nX

i =1

I fj r i (� )j < r g (7)

and one easy veri�es that (see [19])

� (�; i ) � 1
n

= F (n )
� (jr i (� )j):

Finally, the normal equations (6) can be written as10

nX

i =1

w
�

F (n )
� (jr i (� )j)

�
X i  

�
Yi � X 0

i �
�̂

�
= 0 : (8)

As  (0) is antisymmetric and  (0) = 0, the normal equation (8) can be handled as follows

X

f i : ( Yi � X 0
i � )6=0 g

w
�

F (n )
� (jr i (� )j)

�
X i  

�
Yi � X 0

i �
�̂

�

=
X

f i : ( Yi � X 0
i � )6=0 g

w
�

F (n )
� (jr i (� )j)

�
X i

�
 

�
Yi � X 0

i �
�̂

�
�

�̂
Yi � X 0

i �

�
(Yi � X 0

i � )

=
X

f i : jYi � X 0
i � j> 0g

w
�

F (n )
� (jr i (� )j)

�
X i

�
 

�
jYi � X 0

i � j
�̂

�
�

�̂
jYi � X 0

i � j

�
(Yi � X 0

i � ) = 0 : (9)

10 It may seem strange to speak about an empirical distribution function under heteroscedasticity. But it is
not - see Lemma 5.1 of Appendix.
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Then denoting v(r; � ) =  ( r
� ) �

r , we �nally have
nX

i =1

w
�

F (n )
� (jr i (� )j)

�
� v (jr i (� )j; �̂ ) X i (Yi � X 0

i � ) = 0 : (10)

As the function v is continuous and non-increasing on the interval [0; 1 ), v(r; � ) = v(jr j; � ), v(0) = 0 and
v : [0; 1] ! [0; 1]. Now, we are going to employ the idea of Frank Hampel (see [5]) that the information
given by observationsz1; z2; :::; zn (say) is the same as the information represented by the corresponding
empirical distribution function. Let us de�ne the inverse function to F (n )

� (r ) as follows

F (n )
inv;�; �̂ (v) = inf r 2 R

n
r 2 R : F (n )

� (r ) � v
o

:
Then we have

F (n )
inv;�; �̂

�
F (n )

� (jr i (� )j)
�

= jr i (� )j (11)

and putting ~ �̂ (z) =  
�

F ( n )
inv;�; �̂ (z)

�̂

�
we have

~ �̂

�
F (n )

� (jr i (� )j)
�

�
1

F (n )
inv;�; �̂

�
F (n )

� (jr i (� )j)
� =  

�
jr i (� )j

�̂

�
�

1
jr i (� )j

= v(jr i (� )j; �̂ ): (12)

Finally, let us put ~w(z) = w(z) � v(z; �̂ ) = w(z) � ~ �̂ (z) � 1
F ( n )

inv;�; �̂ (z)
. Then, taking into account (9), (10),

(11) and (12), the normal equation (8) attained the form
nX

i =1

~w
�

F (n )
� (jr i (� )j)

�
X i (Yi � X 0

i � ) = 0 : (13)

Notice please, that ~w is well de�ned and it ful�ll C2.

3 Consistency and asymptotic representation of the estimator

We will need the following identi�cation condition.
Conditions C3 For any �xed �̂ > 0 and any n 2 N there is only one solution of

(� � � 0)0IE

"
nX

i =1

~w
�

F
(n )
� 0 ;�̂ (jei j)

�
X i

�
ei � X 0

i (� � � 0)
�
#

= 0

namely � = � 0 where

F
(n )
� 0 ;�̂ (jr j) =

1
n

nX

i =1

F� 0 ;i (r ) with F �;i (jr j) = P (jYi � X 0
i � j < r ) (14)

and 8 (� 2 Rp) IE
�
P n

i =1 ~w
�

F
(n )
�; �̂ (jr i (� )j)

�
X i ei

�
= 0 .

Theorem 3.1. Let Conditions C1, C2 and C3 be ful�lled. Then any sequence
n

�̂ (SW;n;w;� )
o1

n =1
of the

solutions of sequence of normal equations (8) for n = 1 ; 2; :::, is weakly consistent.

For the proof see [21] and the discussion given there.

Conditions N C1 The derivative f 0
e(r ) exists and is bounded in absolute value byBe. The derivative

w0(� ) exists and is Lipschitz of the �rst order (with the corresponding constantJw ). Moreover, for any
i 2 N

IE
�
w0(F

(n )
� 0 ; �̂ (jei j))

�
f e(jei j) � f e(�j ei j)

�
� ei

�
= 0 :

Finally, for any j; k; ` = 1 ; 2; :::; p IE jX 1j � X 1k � X 1` j < 1 (as FX (x) does not depend oni , the sequence
f X i g

1
i =1 is sequence of independent and identically distributedp-dimensional r.v.'s).
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Theorem 3.2. Let Conditions C1, C2, C3 and N C1 hold. Then any sequence
n

�̂ (SW;n;w;� )
o1

n =1
of

solutions of the normal equations (13) is weakly
p

n-consistent, i. e.
8(" > 0) 9(K " < 1 ) 8(n 2 N )

P
�n

! 2 
 :
p

n


 �̂ (LW S;n;w ) � � 0)



 < K "

o�
> 1 � ":

For the proof see [22] and again the discussion given there.

Conditions AC1
Let G(v) be the d. f. ofe2 (for de�niton of r. v. e seeConditions C1), i. e. G(v) = F (

p
v) � F (�

p
v)

and g(v) its density. Then for any a 2 R+ there is �( a) > 0 and L a > 0 so that

inf
z2 (0 ;a+�( a))

g(z) > L g;a > 0:

Remark. Notice please thatConditions AC1 hold for any d. f. having positive density in a neighborhood
of 0.

Theorem 3.3. Let Conditions C1, C2, C3, N C1 and AC1 hold and let Q = IE
�

w(F� 0 (jej))X 1X 0
1

	
be

positive de�nite. Then

p
n

�
�̂ (SW;n;w;� ) � � 0

�
= Q� 1 �

1
p

n

nX

i =1

w
�
F� 0 (jei j)

�
� X i ei + op(1): (15)

For the proof see [23].

4 Patterns of results of simulation study

We o�er here some small portion of results of simulations - for�̂ (OLS;n ) , �̂ (S;n;� ) , �̂ (W;n;� ) (see [4]11) and
�̂ (SW;n;w;� ) . Data were generated by the model

Yi = 1 + 2 � X i 2 � 3 � X i 3 + 4 � X i 4 � 5 � X i 5 + ei ; i = 1 ; 2; :::; n: (16)

The explanatory variables X i 's were generated by standard normal d. f., independent each from other,
independent from error terms ei 's which were normally distributed with zero mean and heteroscedastic
variances which were uniformly distributed on [0:5; a] (a is speci�ed at the captions of tables). Algorithms
from [4] (employing [14] and [3]) and from [15] (which basically coinside with [7]) were used forS-, W-
and SW-estimators, respectively (MATLAB codes are available on request). Tukey's function

� c(x) =
x2

2
�

x4

2 � c2 +
x6

6 � c4 for jxj � c and � c(x) =
c2

6
otherwise;

(see e. g. [3], the constant c is speci�ed at the captions of tables) and the quadratic function were
utilized as the objective functions � for S-, W - and SW-estimators, respectively. The value b =

IE
n

w
�

F
�

ei
�̂ 0

��
� ( e2

1
�̂ 2

0
)
o

was for givenc computed as (p is dimension of model, i. e.p = 5)

b = p
� 2

p+2 (c2)

2
� p � (p + 2)

� 2
p+4 (c2)

2 � c2 + p � (p + 2) � (p + 4)
� 2

p+6 (c2)

6 � c4 +
c2

6
(1 � � 2

p(c2)) ;

see again [3]. Finally, the weight function w(r ) = 1 for r 2 [0; h], w(r ) = 0 for r 2 [g;0] (h < g ) and
on [h; g] it has the shape of the \left-wing" of Tukey's function, decreasing from 1 to 0. Due to rather

11 W -estimator �̂ ( W;n;� ) is to represent an improvement of S-estimator just taking into account the Mahalanobis
distances of observations from the center of gravity.
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good PC12 all the constants c, h, g and W -level13 were assigned to minimize an \aggregated" (over
the coordinates of �̂ (estimator ) ) MSE, see below. We have generated 100 datasets14, each contained 500
observations and we computed the estimates of regression coe�cients

n
�̂ (estimator;k ) = ( �̂ (estimator;k )

1 ; �̂ (estimator;k )
2 ; �̂ (estimator;k )

3 ; �̂ (estimator;k )
4 ; �̂ (estimator;k )

5 )0
o100

k=1
:

The abbreviations OLS, S, W and SW at the position of \estimator" indicate the method employed for
the computation. Finally, we report values (for j = 1 ; 2; 3; 4 and 5)

�̂ (estimator )
j =

1
100

100X

k=1

�̂ (estimator;k )
j and [MSE

�
�̂ (estimator )

j

�
=

1
100

100X

k=1

h
�̂ (estimator;k )

j � � 0
j

i 2
: (17)

12 HP Elite 7500 with Intel Core i7-3770 Processor (3.4 GHz, 8MB cache).
13 Explanation for W -level: If the Mahalanobis distance from the center of gravity for given observation over-

comes the � 2-upper quantile for the value 1 - W-level, the observation is deleted from the dataset and then the
S-estimator is computed.

14 We experimented with various numbers of repetitions - smaller than 100 exhibited some instability in MSE, in
the sense that repeated simulations (yielding one particular table - see below) gave (rather) di�erent information
about the dispersion of the estimates for individual datasets, - the larger gave a lower information about the
preciseness of estimation by�̂ ( estimator )

j (see (17)) just resulting in exact \true values of coe�cients", see ( 16).
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Contamination level = 1%, h = 0 :970; g = 0 :985, c = 9 :8, W -level = 0 :999

�̂ (OLS )
(MSE ) 0:978(0 :084) 1:421(1 :568) � 1:907(2 :065) 2:505(3 :340) � 3:047(5 :185)

�̂ (S)
(MSE ) 1:004(0 :006) 1:999(0 :005) � 3:002(0 :004) 3:992(0 :005) � 5:009(0 :005)

�̂ (W )
(MSE ) 1:003(0 :006) 2:001(0 :007) � 3:004(0 :006) 3:995(0 :006) � 5:005(0 :005)

�̂ (SW )
(MSE ) 1:003(0 :006) 1:995(0 :006) � 3:000(0 :004) 3:991(0 :005) � 5:011(0 :005)

Contamination level = 2%, h = 0 :960; g = 0 :975, c = 8 :5, W -level = 0 :98

�̂ (OLS )
(MSE ) 0:950(0 :121) 0:858(2 :571) � 1:067(5 :154) 1:483(7 :435) � 1:952(10 :970)

�̂ (S)
(MSE ) 0:993(0 :004) 1:997(0 :005) � 3:004(0 :005) 4:011(0 :007) � 5:012(0 :005)

�̂ (W )
(MSE ) 0:993(0 :004) 1:996(0 :005) � 3:003(0 :006) 4:014(0 :008) � 5:012(0 :005)

�̂ (SW )
(MSE ) 0:992(0 :004) 1:992(0 :005) � 3:008(0 :006) 4:009(0 :007) � 5:007(0 :005)

Contamination level = 3%, h = 0 :950; g = 0 :960, c = 7 :6, W -level = 0 :95

�̂ (OLS )
(MSE ) 0:987(0 :189) 0:396(3 :391) � 0:476(7 :713) 0:847(11 :062) � 0:898(18 :278)

�̂ (S)
(MSE ) 0:994(0 :005) 2:005(0 :006) � 2:995(0 :006) 4:015(0 :003) � 5:006(0 :004)

�̂ (W )
(MSE ) 0:994(0 :005) 2:011(0 :007) � 2:999(0 :006) 4:012(0 :004) � 5:014(0 :006)

�̂ (SW )
(MSE ) 0:992(0 :005) 2:006(0 :006) � 2:996(0 :005) 4:013(0 :004) � 5:007(0 :005)

Contamination level = 5%, h = 0 :920; g = 0 :945, c = 6 :4, W -level = 0 :94

�̂ (OLS )
(MSE ) 0:921(0 :282) � 0:057(4 :827) 0:254(11 :390) � 0:268(19 :055) 0:455(30 :643)

�̂ (S)
(MSE ) 1:016(0 :005) 1:995(0 :004) � 2:997(0 :006) 4:009(0 :004) � 4:994(0 :006)

�̂ (W )
(MSE ) 1:016(0 :005) 1:997(0 :006) � 2:996(0 :007) 4:010(0 :006) � 4:995(0 :006)

�̂ (SW )
(MSE ) 1:013(0 :005) 1:996(0 :006) � 2:996(0 :008) 4:011(0 :005) � 4:995(0 :006)

Contamination level = 10%, h = 0 :970; g = 0 :985, c = 6 :2, W -level = 0 :93

�̂ (OLS )
(MSE ) 0:933(0 :072) 1:272(1 :635) � 1:887(2 :406) 2:747(2 :602) � 3:382(3 :513)

�̂ (S)
(MSE ) 0:999(0 :005) 2:015(0 :007) � 3:008(0 :006) 4:012(0 :005) � 5:012(0 :005)

�̂ (W )
(MSE ) 0:999(0 :005) 2:016(0 :008) � 3:006(0 :007) 4:014(0 :007) � 5:012(0 :007)

�̂ (SW )
(MSE ) 1:001(0 :005) 2:014(0 :006) � 3:011(0 :007) 4:010(0 :005) � 5:007(0 :006)

Table 1. Contamination by bad leverage points: For randomly selected observations we put
X i = 5 � X original

i , then we put Yi = � X i � 0 + ei (for � 0 = (1 ; 2; � 3; 4; � 5)0 see (16) ). Number of
observations in each dataset = 500, a = 2.
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Contamination level = 1%, h = 0 :968; g = 0 :980, c = 8 :3, W -level = 0 :994

�̂ (OLS )
(MSE ) 0:948(0 :096) 1:638(0 :893) � 2:301(1 :132) 2:915(1 :936) � 3:903(2 :093)

�̂ (S)
(MSE ) 0:968(0 :023) 1:994(0 :021) � 2:999(0 :017) 4:023(0 :018) � 4:979(0 :018)

�̂ (W )
(MSE ) 0:968(0 :023) 1:990(0 :023) � 2:992(0 :021) 4:025(0 :022) � 4:978(0 :021)

�̂ (SW )
(MSE ) 0:964(0 :028) 2:001(0 :012) � 3:002(0 :014) 4:003(0 :013) � 4:996(0 :012)

Contamination level = 2%, h = 0 :958; g = 0 :971, c = 7 :2, W -level = 0 :98

�̂ (OLS )
(MSE ) 0:947(0 :197) 1:497(0 :835) � 1:905(1 :855) 2:753(2 :322) � 3:447(3 :497)

�̂ (S)
(MSE ) 1:004(0 :019) 2:008(0 :022) � 3:008(0 :021) 4:018(0 :020) � 5:016(0 :023)

�̂ (W )
(MSE ) 1:003(0 :019) 2:006(0 :026) � 3:011(0 :025) 4:030(0 :027) � 5:017(0 :025)

�̂ (SW )
(MSE ) 1:005(0 :023) 2:007(0 :010) � 3:009(0 :013) 3:999(0 :009) � 5:013(0 :010)

Contamination level = 3%, h = 0 :950; g = 0 :960, c = 6 :8, W -level = 0 :965

�̂ (OLS )
(MSE ) 1:003(0 :267) 1:209(1 :085) � 1:830(1 :773) 2:671(2 :438) � 3:313(3 :663)

�̂ (S)
(MSE ) 1:005(0 :021) 1:988(0 :025) � 2:990(0 :018) 3:998(0 :025) � 4:993(0 :023)

�̂ (W )
(MSE ) 1:005(0 :021) 1:993(0 :027) � 2:993(0 :026) 3:997(0 :028) � 5:018(0 :027)

�̂ (SW )
(MSE ) 1:006(0 :022) 2:002(0 :008) � 3:007(0 :007) 3:998(0 :008) � 5:005(0 :008)

Contamination level = 5%, h = 0 :920; g = 0 :945, c = 6 :2, W -level = 0 :94

�̂ (OLS )
(MSE ) 1:007(0 :602) 1:344(0 :811) � 1:932(1 :601) 2:642(2 :300) � 3:140(3 :969)

�̂ (S)
(MSE ) 1:002(0 :026) 1:983(0 :024) � 3:020(0 :022) 3:991(0 :023) � 5:030(0 :021)

�̂ (W )
(MSE ) 1:001(0 :026) 2:002(0 :030) � 3:021(0 :027) 3:982(0 :026) � 5:040(0 :024)

�̂ (SW )
(MSE ) 1:009(0 :030) 1:992(0 :004) � 3:005(0 :004) 3:997(0 :004) � 4:993(0 :004)

�̂ (SW )
(MSE ) 1:009(0 :030) 1:992(0 :004) � 3:005(0 :004) 3:997(0 :004) � 4:993(0 :004)

Contamination level = 10%, h = 0 :820; g = 0 :865, c = 6 :0, W -level = 0 :93

�̂ (OLS )
(MSE ) 0:859(0 :968) 1:253(0 :768) � 1:817(1 :630) 2:501(2 :477) � 2:970(4 :502)

�̂ (S)
(MSE ) 0:981(0 :031) 1:990(0 :023) � 2:976(0 :032) 3:996(0 :024) � 4:962(0 :028)

�̂ (W )
(MSE ) 0:978(0 :030) 1:987(0 :029) � 2:977(0 :032) 4:006(0 :037) � 4:981(0 :035)

�̂ (SW )
(MSE ) 0:983(0 :026) 2:009(0 :002) � 3:000(0 :002) 3:993(0 :003) � 4:997(0 :002)

Table 2. Contamination by bad leverage points as desccribed in Table 1 but data
contained also good leverage pointsX i = 10 � X original

i , the same amount as of bad
leverage points. Number of observations in each dataset = 500, a = 5.
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Contamination level = 1%, h = 0 :970; g = 0 :985, c = 8 :9, W -level = 0 :998

�̂ (OLS )
(MSE ) 0:928(0 :057) 1:960(0 :023) � 2:933(0 :022) 3:908(0 :034) � 4:890(0 :034)

�̂ (S)
(MSE ) 0:968(0 :021) 2:003(0 :022) � 3:009(0 :022) 3:997(0 :018) � 4:988(0 :020)

�̂ (W )
(MSE ) 0:968(0 :021) 2:013(0 :031) � 3:011(0 :028) 4:004(0 :024) � 4:998(0 :025)

�̂ (SW )
(MSE ) 0:970(0 :022) 2:010(0 :013) � 2:999(0 :010) 3:993(0 :010) � 4:996(0 :012)

Contamination level = 2%, h = 0 :960; g = 0 :975, c = 7 :7, W -level = 0 :96

�̂ (OLS )
(MSE ) 0:890(0 :100) 1:966(0 :010) � 2:944(0 :010) 3:929(0 :014) � 4:898(0 :018)

�̂ (S)
(MSE ) 0:995(0 :026) 1:979(0 :022) � 2:989(0 :022) 3:975(0 :019) � 4:988(0 :023)

�̂ (W )
(MSE ) 0:995(0 :026) 1:979(0 :028) � 2:984(0 :028) 3:980(0 :023) � 4:993(0 :027)

�̂ (SW )
(MSE ) 0:993(0 :025) 1:995(0 :004) � 2:999(0 :004) 4:000(0 :005) � 4:996(0 :003)

Contamination level = 3%, h = 0 :950; g = 0 :960, c = 8 :2, W -level = 0 :945

�̂ (OLS )
(MSE ) 0:830(0 :148) 1:959(0 :009) � 2:949(0 :008) 3:925(0 :015) � 4:924(0 :014)

�̂ (S)
(MSE ) 1:000(0 :020) 1:992(0 :018) � 3:031(0 :020) 3:981(0 :023) � 5:004(0 :018)

�̂ (W )
(MSE ) 0:999(0 :020) 2:019(0 :027) � 3:028(0 :024) 3:992(0 :027) � 5:016(0 :023)

�̂ (SW )
(MSE ) 0:990(0 :020) 2:003(0 :002) � 2:993(0 :003) 3:993(0 :004) � 5:012(0 :003)

Contamination level = 5%, h = 0 :920; g = 0 :945, c = 8 :35, W -level = 0 :93

�̂ (OLS )
(MSE ) 0:742(0 :304) 1:959(0 :004) � 2:949(0 :006) 3:934(0 :008) � 4:909(0 :011)

�̂ (S)
(MSE ) 1:001(0 :024) 1:984(0 :025) � 2:962(0 :032) 3:958(0 :026) � 4:956(0 :027)

�̂ (W )
(MSE ) 1:002(0 :024) 1:984(0 :027) � 2:983(0 :030) 3:992(0 :030) � 4:984(0 :027)

�̂ (SW )
(MSE ) 1:004(0 :018) 1:997(0 :001) � 2:999(0 :001) 4:002(0 :001) � 4:993(0 :001)

Contamination level = 10%, h = 0 :820; g = 0 :865, c = 9 :1, W -level = 0 :928

�̂ (OLS )
(MSE ) 0:365(0 :739) 1:973(0 :002) � 2:952(0 :003) 3:948(0 :004) � 4:930(0 :006)

�̂ (S)
(MSE ) 0:957(0 :037) 1:910(0 :048) � 2:878(0 :070) 3:866(0 :064) � 4:751(0 :120)

�̂ (W )
(MSE ) 0:959(0 :038) 1:980(0 :035) � 3:000(0 :034) 4:012(0 :029) � 4:949(0 :030)

�̂ (SW )
(MSE ) 1:010(0 :025) 1:995(0 :001) � 2:998(0 :001) 3:999(0 :001) � 5:003(0 :001)

Table 3. Contamination by outliers: For randomly selected observations we putYi = 5 � Y original
i and

data contained also good leverage pointsX i = 10 � X original
i .

Number of observations in each dataset = 500, a = 2.
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5 Conclusions

The robust estimators try to depress the inuence of atypical points in data by various tools - by an
appropriate shape of the objective function � , by the weights which are assigned utilizing an external
rule or by employing the order statistics of (squared) residuals, by �nding a minimal volume containing
a priori given percentage of data, by minimization of an estimate of variance of error term, by minimal
distance estimation, etc. In the situation which is presented in Figure 1 below, all robust estimators
correctly recognize that the group of 5 points under the main cloud of data in are outliers and they try
to depress their inuence. The estimators which try to do it by minimizing estimated variance of error
terms or by �nding a minimal volume containing a priori given portion of observations or relying on
minimal distance principle, very likely lose the information represented by the group of good leverage
points in the right-upper corner of Figure 1. And the results exhibited in the above given tables con�rm
it by comparing the mean square error of S-weighted estimatorswith two other robust estimators, S-
and W -estimators. Taking into account some previous experiences we can conjecture that the attempts
to cope with contamination only by weighting down the (squared) residuals or by selecting hopefully the
appropriate objective function � need not be su�cient. So, in a somewhat more general point of view,
the results of simulations support the recommendation given already in [6] that we should employ all
estimators we have at our disposal, compare the results and �nd the reason(s) of signi�cant di�erences
among them, if any.

Figure 1. An example of data when outliers can cause problem if the estimator is of type of minimal
volume or it is minimizing the spread of error terms - just decreasing the e�ciency of estimation.
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Appendix
Lemma 5.1. Let Conditions C1 hold. Recalling that ei 's have di�erent variances �̂ 2

i , let us denote
Fi;� (v) = P (jYi � X 0

i � j < v ) and put

F n;� (v) =
1
n

nX

i =1

Fi;� (v): (18)
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Then for any e > 0 there is a constantK " and n" 2 N so that for all n > n "

P

 (

! 2 
 : sup
v2 R +

sup
� 2 IR p

p
n

�
�
�F (n )

� (v) � F n;� (v)
�
�
� < K "

)!

> 1 � ": (19)

For F (n )
� (v) see (7) and for the proof see [20].

Figure 2. Examples of the weight function of Tukey's shape forSW-estimator.
There is not a theoretical result but the experiences from simulation hint that under a (serious)

heteroscedasticity the left version of weight function gives better results. Noticeable results were also
obtained when the heteroscedsaticity was estimated in a robust way, for the hint of classical way see

[24] and robustify it.
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Abstract. Online detection of abrupt changes in the parameters of a generative model for a time series
is useful when modelling data in areas of application such as �nance, robotics, and biometrics. We
present an algorithm based on Sequential Importance Sampling which allows this problem to be solved
in an online setting without relying on conjugate priors. Our results are exact and unbiased as we avoid
using posterior approximations, and only rely on Monte Carlo integration when computing predictive
probabilities. We apply the proposed algorithm to three example data sets. In two of the examples we
compare our results to previously published analyses which used conjugate priors. In the third example
we demonstrate an application where conjugate priors are not available. Avoiding conjugate priors allows
a wider range of models to be considered with Bayesian changepoint detection, and additionally allows
the use of arbitrary informative priors to quantify the uncertainty more exibly.

Keywords. Changepoint Detection, Bayesian Inference, Sequential Importance Sampling, Sequential
Monte Carlo, Online Problems

1 Introduction

Identifying abrupt changes in the parameters of a generative model for a time seriesf x t g
T
t =1 is a problem

widely known as changepoint detection. A wide spectrum of changepoint detection methods has been
developed with a Bayesian perspective [19, 3, 20, 8, 6, 1, 18, 21]. Some of these methods are retrospec-
tive, and require complete observation of a time series. In this paper we focus on problems where the
data are obtained incrementally over time, so calledonline problems. In an online context, inferences
about changepoints need to be updated each time an observation is made. An e�ective online Bayesian
changepoint detection method was developed using conjugate priors to the exponential family of models
by [1].

[21] proposed using variational approximations to expand this approach to a wider class of models.
Similarly, approximations using Gaussian processes were employed by [18] to expand the utility of the
online Bayesian changepoint detection algorithm. However, these two modi�cations are approximate,
and exact inference is often desirable in critical �elds. [6] developed an approach very similar to [1]
which was published the same year. Although [6] extended the algorithm with direct simulation from
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the posterior of the number and position of the changepoints using Sequential Monte Carlo, they are still
using conjugate priors.

In this paper, we extend the method developed by [1] and [6] to a wider range of models by removing
the requirement for conjugate priors, and perform inference using Sequential Importance Sampling [15].
Unlike the approach of [6], we consider a sequence of �ltering distributions along posteriors of generative
model parameters. This choice of �ltering distributions allows us to completely avoid the conjugacy
requirement, which, as aforementioned, limits model choice. Our method, in contrast to approaches of
[21] and [18], performs exact inference, while sampling errors can be easily monitored and controlled. The
complexity of the proposed algorithm grows linearly with new data, similarly to the methods proposed
by [1] and [6].

The outline of the paper is as follows: in Section2 we introduce the changepoint model for the
proposed approach. Section3 de�nes a Sequential Importance Sampling scheme for the online Bayesian
changepoint detection algorithm. Experimental results from applying the proposed algorithm to a variety
of changepoint detection problems are given in Section4. The paper concludes with a discussion. The
source code for the proposed algorithm and all our experiments are provided in the supplementary
material.

2 Changepoint Model

We begin by adopting the changepoint model proposed by [1]. Assuming that a series of observationsx1;
x2; : : : xT may be divided into non-overlapping product partitions [2], data within each partition p are
considered i.i.d. and follow a distribution P(x t j� p). A prior � (� p) is assigned to the model parameters.
The parameters � p are considered i.i.d. between partitions. We will use the following notation for a
sequence of observations from time pointa to time point b:

xa:b = f x t : t = a; : : : ; bg:

Our goal is to estimate the posterior probability of current run lengths that correspond to the time
since the last changepoint, given the data so far observed. The length of the current run at time pointt
is denotedr t . We will use the notation x t;r t for a set of data corresponding to a run lengthr t :

x t;r t =
�

x t � r t +1: t ; if r t > 0;
; ; if r t = 0 :

As run length is unknown, the predictive density for the next coming datum can be calculated as the
following:

P(x t +1 jx1:t ) =
tX

r t =0

P(x t +1 jx t;r t )P(r t jx1:t ); (1)

where

P(x t +1 jx t;r t ) =
Z

P(x t +1 j� p)P(� p jx t;r t )d� p;

and the posterior run length probability is de�ned as

P(r t jx1:t ) =
P(r t ; x1:t )

P(x1:t )
: (2)

The joint distribution P(r t ; x1:t ) is de�ned recursively

P(r t ; x1:t ) =
t � 1X

r t � 1 =0

P(r t jr t � 1)P(x t jx t � 1;r t � 1 )P(r t � 1; x1:t � 1); (3)
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where P(x t jx t � 1;r t � 1 ) is the predictive probability based on the current run, and the changepoint prior
P(r t jr t � 1) is de�ned by a hazard function H (r t ):

P(r t jr t � 1) =

8
<

:

H (r t � 1 + 1) if r t = 0 ;
1 � H (r t � 1 + 1) if r t = r t � 1 + 1 ;
0 otherwise:

(4)

The marginal probability P(x1:t ) in ( 2) is calculated as

P(x1:t ) =
tX

r t =0

P(r t ; x1:t ): (5)

Two possible options may be considered for the current run length at the beginning of observations
r 0. If it is appropriate to say that the �rst observation x1 is the very �rst observation of the �rst partition
of the data, we assumeP(r 0 = 0) = 1. In a more complex scenario, when we need to consider that the
process may have been running for some time beforex1, the prior for r 0 can be de�ned using a survival
function:

P(r 0 = � ) =
1
Z

F (� );

where Z is an appropriate normalisation constant, and

F (� ) =
1X

t = � +1

P(run length is t):

[1] as well as [6] rely on conjugate priors to calculate the predictive probability P(x t jx t � 1;r t � 1 ) in ( 3).
We propose estimating these probabilities with Monte-Carlo integration based on weighted samples from
a generative model posterior:

P(x t jx t � 1;r t � 1 ) =
Z

P(x t j� p)P(� p jx t � 1;r t � 1 )d� p (6)

�
MX

i =1

! i P(x t jS( i )
r t � 1

); (7)

where S( i )
r t � 1 are sampled fromP(� p jx t � 1;r t � 1 ) with weights ! i , such that

P M
i =1 ! i = 1.

This estimator is known to be unbiased with variance decreasing asymptotically to zero at the rate
1=M when ! i are approximately equal [7]. At time t, this approach requirest samplesSr t � 1 corresponding
to all possible previous run lengths from zero to t-1.

With every new datum x t becoming available, the Online Bayesian Changepoint Detection algorithm
updates a vector of probabilitiesP(r t jx1:t ); r t = 0 ; : : : t according to (2). The recursive nature of (3) allows
us to evolve samplesSr from one stage of the algorithm to the next using importance sampling, estab-
lishing a Sequential Importance Sampling scheme [15] along a sequence of generative model parameter
posteriors as explained in Section3.

3 Changepoint Detection Algorithm

In Algorithm 3 we modify the Online Bayesian Changepoint Detection algorithm proposed by [1] and [6]
using the Monte-Carlo estimation of the predictive probabilities (6).

Calculating the predictive probabilities in Step 3 of the algorithm requires a sample Sr t � 1 from
the posterior of the generative model parametersP(� p jx t;r t � 1 ). We propose obtaining such a sample
with importance sampling procedure. A success of such approach relies on selection of the proposal
distribution in importance sampling that is relatively close to the target distribution. The structure of
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Online Bayesian Changepoint Detection Algorithm based on Sequential Importance Sampling.

Step 1 Initialise sample S0 containing M samples from the prior of the generative model pa-
rameters with equal weights

S(i )
0 � � (� p); ! (i )

0 = 1=M; i = 1 ; : : : ; M;

and assign

P(r0 = 0) = 1 ; or P(r0 = � ) =
1
Z

F (� ):

Step 2 Observe new datum x t .

Step 3 For every possible value ofr t � 1 from 0 to t � 1, evaluate predictive probabilities

P(x t jx t � 1;r t � 1 ) =
MX

i =1

! (i )
r t � 1

P(x t jS(i )
r t � 1

):

Step 4 Calculate growth probabilities for values ofr t from 1 to t

P(r t = r t � 1 + 1 ; x1:t ) = P(r t � 1; x1:t � 1)P(x t jx t � 1;r t � 1 )(1 � H (r t � 1)) :

Step 5 Calculate changepoint probability

P(r t = 0 ; x1:t ) =
t � 1X

r t � 1=0

P(r t � 1; x1:t � 1)P(x t jx t � 1;r t � 1 )H (r t � 1):

Step 6 Calculate marginal probability

P(x1:t ) =
tX

r t =0

P(r t ; x1:t ):

Step 7 Determine run length distribution

P(r t jx1:t ) = P(r t ; x1:t )=P(x1:t ):

Step 8 Update samplesSi and corresponding weights! i , for i from t down to 1, using impor-
tance sampling

(Si ; ! i ) = IS(Si � 1; ! i � 1; x(t � i +1): t ):

The importance sampling procedureIS is described in Algorithm 3.

Step 9 SampleS0 from the prior of generative model parameters

S(i )
0 � � (� p); ! (i )

0 = 1=M; i = 1 ; : : : ; M:

Step 10 Go to Step 2.
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Procedure IS(Sold; ! old; x t;r ) takes a sampleSold weighted with ! old, and a non empty subset
of data x t;r as arguments and produces a new sampleS from the generative model parameter
posterior for data x t;r weighted with new weights ! .

Step 1 Sample with replacement a population ofM particles S� from sample Sold according to
weights ! old.

Step 2 Set a new sampleS to S� perturbed with a Gaussian perturbation kernel

S(i ) � N (S� ( i ) ; � � V ar(Sold)) ;

where � > 0 is a variance scaling parameter.

Step 3 Calculate new weights

! (i ) =
P(x t;r jS(i ) )� (S(i ) )

P M
j =1 ! (j )

oldN
�

S(i ) ; S(j )
old; � � V ar(Sold)

� :

Step 4 Calculate the E�ective Sample Size of the new population according to [12]

ESS =
1

P M
i =1

�
! (i )

� 2 :

Step 5 If the E�ective Sample Size is smaller thanM=2, resampleS with replacement according
to weights ! , and assign new particles equal weights! (i ) = 1=M .

Step 6 Return the obtained sample and corresponding weights(S; ! ).

Algorithm 3 utilises the posterior conditioned on the data f x t � r ; : : : ; x t � 1g as the proposal distribution
when sampling from the posterior conditioned on dataf x t � r ; : : : ; x t � 1; x t g. The latter data set includes
only one new datum,x t . This relationship establishes a typical Sequential Importance Sampling scheme
along a sequence of generative model parameter posteriors for datasetsf x1g, f x1; x2g, f x1; x2; x3g and
so on.

To minimise the e�ect of population degeneration issues, we use a Gaussian mixture approximation
to the previous posterior as the proposal distribution. This mixture model prevents direct reusing of old
samples from one generation to the next one. The variance scaling parameter� in Algorithm 3 controls
the scale of the kernel for a smoothing approximation of the proposal distribution with a Gaussian mixture
model. It is usually chosen in the range of 0.1 { 1 and can be tuned individually to every application to
obtain more e�ective proposal. We also measure the E�ective Sample Size [12] of the obtained sample,
and force resampling with replacement of the population when this metric drops below an arbitrarily
selected threshold ofM=2. This resampling allows us to drop low weight particles in the tails of the
posterior, and focus more on high posterior density regions.

In practice we observed that the largest divergence between the proposal and the target distributions
is frequently observed when sampling for the very �rst datum in the sequence using a prior sample as
the proposal. In our case studies the resulting E�ective Sample Size in such cases drops to about 20%
of the E�ective Sample Sizes observed later along the sequence of posteriors. We found it was better to
use larger sample sizeM when the target posterior is conditioned on only one datum. In more complex
cases a partial rejection control strategy [14] may be implemented to address the issues of large mismatch
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Figure 1. Changepoint detection results for the Well Log data. (A) A subset of data analysed
with Online Bayesian Changepoint Detection algorithm. (B) The results obtained with our
proposed method based on Sequential Importance Sampling. (C) The results obtained with [1]
and [6] algorithms using conjugate priors. Both (B) and (C) depict the posterior run length over
data observed so far,P(r t jx1:t ). Darker points suggest run lengths with higher probability.

between the proposal and the target distributions.

4 Experimental Results

We apply the proposed algorithm to three data sets. In the �rst two examples, we replicate results of [1]
and analyse the data sets with our method for comparison. In the third example, our method is applied
to a new data set to demonstrate how it performs with models without conjugate priors.

Well Log Data

A sequence of measurements of nuclear magnetic response was taken during the drilling of a well. The
data are used to interpret geophysical structure of the rock surrounding the well. The variations in mean
reect the strati�cation of the earth's crust. These data were earlier considered by [16] and [5].

A normal model with �xed variance � 2 = 40002 is used as an underlying generative model for the data.
The model is parametrised by single parameter� that corresponds to the mean of the normal distribution.
To compare our results to those of [1] we use the same normal prior for� , with hyperparameters � 0 =
1:15� 105, and � 2

0 = 1 � 108. A memoryless changepoint prior was chosen using the geometric distribution
and corresponding hazard functionH (r t ) = 1 =� , where � = 250.
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Figure 2. Changepoint detection results for the Coal Mining Disasters data. (A) The cumulative
number of signi�cant coal mining accidents between 1851 and 1962. (B) The results obtained
with our proposed method based on Sequential Importance Sampling. (C) The results obtained
with [ 1] and [6] algorithms using conjugate priors. Both (B) and (C) depict the posterior run
length over data observed so far,P(r t jx1:t ). Darker points suggest run lengths with higher
probability.

A subset of the data is depicted in Figure1. Panel A shows the original data values. Panel B shows
the results obtained using the Sequential Importance Sampling approach proposed in this paper. Panel
C shows the results obtained with the original Online Bayesian Changepoint Detection algorithm using
conjugate priors. Notice that the drops to zero run length correspond well with the abrupt changes of
the mean of the data. The di�erences between the results in Panel B and Panel C are very small and
correspond to Monte-Carlo approximations in Sequential Importance Sampling and evaluation of the
predictive distributions in ( 6), the mean square error between these results is 1:14 � 10� 6. Samples of
1024 particles were used in this example for larger data sets, while samples of 4096 particles were used
for samples from the prior and samples for the run lengths of 1. The smallest E�ective Sample Size [12]
is 351, which demonstrates that there were no population degeneracy problems in the sampler. Slightly
lower e�ective sample sizes are observed immediately after a sudden change in the mean of the data, as
these cases correspond to signi�cant updates of the parameter posteriors.

Coal Mining Disasters

To demonstrate how our method works with count data and large data sets, we applied it to a data
set containing the dates of coal mining explosions that killed ten or more men between March 15, 1851
and March 22, 1962 [11]. Following [1], the data were modelled with a Poisson process by weeks, with
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Gamma(1,1) prior on the rate. A geometric prior on the frequency of changepoints was selected with
corresponding hazard functionH (r t ) = 1 =1000.

The results are plotted in Figure 2. The top panel shows the cumulative number of accidents.
The middle panel shows the results obtained with the proposed algorithm using Sequential Importance
Sampling. The bottom panel shows the results with the original Online Bayesian Changepoint Detection
algorithm using conjugate priors. The results are again very similar, with only minor di�erences caused
by Monte-Carlo estimation of predictive probabilities, the mean square error between the two results is
3:02� 10� 8. A signi�cant changepoint in the rate of coal mining disasters is usually attributed to the Coal
Mines Regulations Act 1887 [17] that commenced as law on January 1st, 1888. This date corresponds to
week 1930 in our data set and is marked in the plots with a dashed line.

As the data set contains 6000 time points, 6000 run length updates need to be performed in an online
setting, and importance sampling procedure had to be performedN (N � 1)=2 = 17; 997; 000 times. To
keep the algorithm execution time reasonable, we were using small sample sizes of only 256 particles. The
smallest e�ective sample size in these populations was 47, this demonstrates that we avoided population
degeneracy problems [12].

Gold Prices

To demonstrate how our proposed method works with models without conjugate priors, we applied it to
a new data set containing the closing prices of gold measured in USD/oz from 16th July 2014 to 16th

July 2015. The data are available in the supplementary material to this paper. The data were modelled
with a stochastic di�erential equation,

dG = �Gdt + �GdW;

where G is the price of gold, � and � 2 are the drift and stochastic volatility parameters respectively, and
W is a Wiener process. This equation is often used in �nancial modelling to describe asset prices under
the assumption that prices only depend on the present and not on the past states of the market. This
model belongs to a class of stochastic processes known as Itô processes [10]. A signi�cant result for such
processes, known as the Itô lemma [9], allows us to derive an expression for the functions ofG(t). Using
this lemma, logarithms of G(t) are given as

d logG =
�

� �
� 2

2

�
dt + �dW:

Integrating this equation over the interval [ t; t + 1] gives

logG(t + 1) � logG(t) =
�

� �
� 2

2

�
+ �Z t ;

where Z t � N (0; 1). Using the properties of the normal distribution we can write

logG(t + 1) � logG(t) � N (� �
� 2

2
; � 2);

log
G(t + 1)

G(t)
j�; � 2 � N (� �

� 2

2
; � 2):

Hence, we can model daily returns using a lognormal distribution with location� � � 2=2 and scale� .
The parameters � and � 2 were considered unknown random variables, and were assigned weakly

informative prior distributions based on previous knowledge of gold prices. Using data for gold prices
from 1968 to 2013, it was concluded that the rate of daily returns changes slightly from day to day at
a maximum of � 0:7%. The mean rate of returns is expected to have higher density closer to zero, and
lower density for larger deviations. As a result, we assigned a normal prior to� with mean � 0 = 0 and
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Figure 3. Changepoint analysis of the gold prices during 2014{2015. The closing market price
of gold in USD/oz is plotted in the top panel. The lower panel depicts posterior run length
probabilities at di�erent dates.

variance � 2
0 = 0 :0052 = 2 :5 � 10� 5. Based on the observed volatility of the historic prices, we selected

an exponential prior for the volatility parameter � 2 with mean 2:5 � 10� 5. A memoryless changepoint
prior was chosen using the geometric distribution and corresponding hazard functionH (t) = 1 =� , where
� = 100.

Figure 3 shows the result of changepoint analysis performed using the proposed algorithm. The most
likely outcome is that the observations begin in a state with negative drift and a relatively low volatility
of the prices, then some time between 8 October 2014 and 5 November 2014 the market switches to
approximately zero drift with high volatility, �nally, in the second half of May 2015 the market goes back
to a negative drift and low volatility regime.

Signi�cant changes in the distribution of parameter posteriors with more data becoming available
required using larger populations in Sequential Importance Sampling to tackle population degeneracy
problems. After a few trials with smaller populations and observing low e�ective sample sizes, we ended
up using a population of 32768 particles for the posteriors corresponding to run length from 0 to 30, and
populations of 2048 particles for posteriors corresponding to longer run lengths. The minimal e�ective
sample size achieved with this con�guration is 426, which shows no evidence of population degeneracy
problems.

5 Discussion

The main structure of the proposed algorithm is similar to the one published by [1] and [6]. Sampling
from the posterior of model parameters with Sequential Importance Sampling, instead of using conjugate
prior updates, enables our method to perform changepoint detection with models that do not have
conjugate priors. Avoiding conjugate priors also allows informative priors based on existing knowledge
or observations of similar data to be used for changepoint detection in a truly Bayesian way.

[6] suggested the idea of numerical integration, and earlier gave an example of such approach using
MCMC in [ 4]. The proposed Sequential Importance Sampling approach provides a di�erent sampling
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scheme to aid such numerical integration which does not su�er from common MCMC convergence prob-
lems and can be easily implemented in high performance computing environment.

The computational complexity of processing one more data point grows linearly as new data arrive,
as with every datum one more run length needs to be considered. The requirements for data storage in
computer memory also grow linearly. The computational complexity of the proposed algorithm is on the
same order as for the algorithms of [1] and [6]. It must be noted that performing importance sampling is
more computationally expensive in comparison to updating conjugate parametrisation. Updating conju-
gate parametrisation typically takes just a small constant number of arithmetic operations. Resampling
the parameter posterior with SMC for a sample sizeM takes O(M 2) operations and therefore produces
large complexity scaling constants. Therefore the proposed algorithm is slower than the one that uses con-
jugate priors with a constant complexity proportion. For example, performing the last round of updates
in the Well Log example takes the original Online Bayesian Changepoint Detection algorithm 0.000155
seconds, while our algorithm requires 5.64293 seconds. This shows that our algorithm is almost 40,000
times slower. However, Sequential Monte Carlo methods are well suited for parallel implementation using
high performance computational resources, as all of the particles in the population are sampled indepen-
dently and therefore can be processed at the same time. The source code provided in the supplementary
material implements Sequential Importance Sampling for the three examples described in this paper us-
ing three approaches: a traditional sequential implementation, a multiprocessor parallel algorithm using
OpenMP framework, and a massively parallel implementation running on a graphics processor via CUDA
framework.

The examples considered in this paper use models with a small number of parameters. Unfortunately,
it is well known that importance sampling is usually ine�cient in high-dimensional spaces [7]. So, as the
number of model parameters increases, the problem with arise in this setting. However, the number of
parameters needed to observe these problems is quite high, and in many practical applications medium
sized models will still be feasible.

In real world applications some heuristic simpli�cations can be made to limit the computational
complexity of the problem. Only limited run lengths may need to be considered when monitoring some
data. For example, processing the Well Log data set, we could have limited the maximal run length
time to the order of a few hundred as we expect changepoints to occur on average every 250 time points.
Another example would be monitoring fast changing �nancial markets, where the possibility of a run
that goes over several years is practically zero.

select particles satisfying a desired criteria, those particles not satisfying the criteria receive zero
weight. It is possible to formulate conditions under which the algorithm is guaranteed to require a �nite
number of attempts M St < 1 to obtain exactly M non-zero weighted particles [13].
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Abstract. On March 11, 2011, a massive amount of radioactive material was released into the environ-
ment because of the Fukushima Daiichi Nuclear Power Station (NPS) accident. Surveys on the amount of
radioactive materials are very important for assessing the state of the surrounding environment and plan-
ning future countermeasures. The authors attempted to detect a high-contaminant cluster accompanied
by a time change for the area of evacuation in the Fukushima Prefecture from January 10{19, 2013. The
data were air dose rate measured by monitoring post. As a priori analysis, the authors applied a spatial
interpolation using ordinary kriging, because the observations obtained were very sparsely scattered and
had extremely large dispersion and bias. The result of applying a spatial scan statistic based on echelon
analysis was the detection of a signi�cant space{time cluster that decreased with the passing of time.
Moreover, the detected cluster was located in the direction of northwest from the NPS.

Keywords. Echelon analysis, Space{time cluster, Spatial scan statistic, Spatial interpolation

1 Introduction

The detection of problems such as the generation status of infective diseases or hazard maps of natural
disasters is very basic and important. Some powerful and useful tools such as geographical information
systems (GISs) are available, but it is very di�cult to determine the location of space{time clusters
for various types of spatial data in large quantities or with large time series. The aim of this study is
to identify a high-contaminant cluster for the area of evacuation in the Fukushima Prefecture and to
understand its temporal progress.

On March 11, 2011, a massive amount of radioactive material leaked from Tokyo Electric Power
Company's Fukushima Daiichi Nuclear Power Station (NPS). This accident caused serious damage to
both economic and social development, causing a wide range of problems in the environment and in food
production as well. Although �ve years have passed since the accident, there is still intense concern
about the inuence of radioactive contamination, and high air dose rates and high concentrations of
radionuclides are still found in some areas around the NPS [12]. Surveys on the amount of radioactive
materials are very important for assessing the state of the surrounding environment and planning future
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countermeasures. The Nuclear Regulation Authority (NRA) of Japan inaugurated the Comprehensive
Radiation Monitoring Plan on August 2, 2011 [1]. Monitoring posts are equipped with air radiation
dose-rate-measuring devices at �xed locations, with data obtained at 1 m above the ground. A unit of
measurement is microsieverts per hour (� Sv=h). Approximately 4,400 monitors were installed in Japan
as of April 1, 2016, and the Fukushima Prefecture accounts for over 85% of these. Data is logged every
10 min and stored continuously. The data are openly available at http://radioactivity.nsr.go.jp/map/ja/.

The study on cluster detection using spatial scan statistics [8] is being applied in such �elds as
epidemiology, astronomy, biosurveillance, and forestry, etc. Several studies on e�ective scan techniques
for using such scan statistics have been published [2, 14, 16, 17]. However, some of them limit the shape
of the detected clusters or require an unrealistic computational time if the data set is too large. To solve
these problems, we proposed using an echelon spatial scan statistic [4, 5]. This method enables a cluster
of an arbitrary shape to be detected even when large amounts of data are targeted. Moreover, we need
to take account of both space and time because the monitoring data, measured every 10 min, provide
not only the geographical location but also time series information. In this study, we applied a technique
of spatial interpolation for compensating for the small number of observations of air dose rate and then
detected a exible space{ time cluster by incorporating a temporal scale into an echelon spatial scan
statistic. By including a temporal dimension, we could allow tracking of a time-series change of the shape
of the high-contaminant radioactive cluster.

2 Materials

The study area chosen has the highest level of radiation contamination in Fukushima Prefecture. We
used regularly arranged 10 km� 10 km meshes designed by the administrative organ covering the range
within 37.333 degrees north latitude, 140.625 degrees east longitude, 37.667 degrees north latitude, and
141.050 degrees east longitude, containing most of the three levels of the evacuation area that the Japanese
government has recognized. In addition, we set ten days as the study period, i.e., from January 10 to
19, 2013. In this period, the air dose rate remarkably decreased temporarily because of the heavy snow
that fell on Japan. In such a situation, the detected cluster's size was expected to decrease with lapse of
time. Figure 1 shows the study area divided into meshes. It also shows the location of the Fukushima
Daiichi NPS and the monitoring posts on January 10. The total number of monitoring posts was 212 at
that time.

Mean daily air dose rates with 10-min data aggregated into daily intervals were used as the analysis
object in this study. The air dose rates for each monitoring post are summarized in the boxplot shown
in Figure 2. We removed some false data caused by instrument anomalies, as announced on the NRA
website. In Figure 2, the lines labeled from A to E were measured at the corresponding measurement
points on the map of Figure 1. These points indicated remarkably higher doses than the others. Figure
2 also shows that the air dose rate decreased from January 14 to 15 as a whole. At that time, record-
breaking heavy snow had fallen in the study area.

3 Spatial interpolation

Cluster detection is very di�cult under these conditions, because the monitoring posts of the study area
are very sparsely scattered. Accordingly, we attempted to increase the location of the analysis object by
using the spatial interpolation, i.e., ordinary kriging. We describe the analysis execution for the data of
January 10 here. First, we redivided the study area into smaller 500 m� 500 m meshes and assigned an
air dose rate value to each of the mesh based on the corresponding post location. If two or more posts
were installed in one mesh, the mesh was assigned their mean value. Figure3 shows the division of data
into the 5,440 meshes and the assigned values of air dose rate.

As is evident from the Figure 2, the dispersion and the bias of the data are extremely large. Therefore,
to improve kriging precision, the observations were normalized using a Box-cox transformation (� =
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Figure 1. Study area divided most of the three levels of the evacuation area into 10 km� 10 km
meshes, with the Fukushima Daiichi NPS and the location of each monitoring post on January
10.

Figure 2. Time series variation of air dose rates for each monitoring post.

� 0:18), and we used a model based on an anisotropic variogram. That is, by assuming a geometric
anisotropy, we constructed isotropic spatial processes by performing coordinate conversion based on the
rotation angle (� = 150� ) of the coordinates and the anisotropy ratio (r = 3 :5). The varigoram cloud for
the transformed data is shown in Figure4. The horizontal axis represents the intercentral distancekhk
of each mesh. The vertical axis represents the dissimilarity �

i;j of two points x i and x j , which can be
computed as half of the squared di�erence between the sample dataz(x i ) and z(x j ), i.e.,

 �
i;j =

(z(x i ) � z(x j ))2

2
:

This contains information regarding the spatial structure of the sample and provides a �rst idea of the
relationship between two points. Further, the dissimilarity  � depends only on theh value of the sample
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Figure 3. Study area redivided into 500 m� 500 m meshes and the assigned value of air dose
rate on January 10, 2013.

Figure 4. The variogram cloud (above) and the cloud values for each class (below) for the study
area on January 10, 2013.

points x i and x i + h, hence

 � (h) =
(z(x i + h) � z(x i ))2

2
:

Subsequently, there could exist more than one dissimilarity value for some distancekhk. On the
other hand, most h values will be without any observation and thus still without dissimilarity value
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 � (h). To estimate a distance between two arbitrary points without directly measuring the distances
between the points, the experimental variogram is assumed, and the theoretical variogram is applied to
it. The experimental variogram is de�ned as

 � (h) =
1

2jN (h)j

X

N (h )

(z(x i ) � z(x j ))2:

where N (h) = f (x i ; x j ) : x i � x j = h for i; j = 1 ; 2; :::; ng is the set of all pairs of points with h and
jN (h)j is the number of pairs in N (h).

Fitting the variogram models

The experimental variogram  � (h) provides a �rst estimate of the assumed underlying theoretical vari-
ogram  (h), which can be used to characterize the spatial structure and is needed for our future kriging
methods. We must �t a variogram function to an empirical variogram, i.e., replace an empirical variogram
with a theoretical variogram that is a suitable valid function. In this study, we attempted to apply the
following well-known parametric variogram models. The three common parameters,� 0, � 1, and � 2 relate
to nugget, sill and range, respectively, i.e., the nugget� 0 is de�ned by  (h) as khk = 0, the sill � 0 + � 1

is the value  (1 ) = lim kh k!1  (h), and the range � 2 is the distance at which the  (h) exceeds the sill
value for the �rst time.

� Exponential model
 (hj� 0; � 1; � 2) = � 0 + � 1

�
1 � exp

�
�

khk
� 2

��

� Gaussian model

 (hj� 0; � 1; � 2) = � 0 + � 1

�
1 � exp

�
�

khk2

� 2
2

��

� Mat�ern model

 (hj� 0; � 1; � 2) = � 0 + � 1

 

1 �
1

2k � 1�( k)

�
khk
� 2

� k

K k

�
khk
� 2

� !

with the smoothness parameterk varying from 0 to 1 , gamma function �( �), and modi�ed Bessel
function K k (�).

Next, we need to choose the most suitable variogram model for the given empirical variogram, and
the parameters � 0, � 1, and � 2 of each model must be estimated. In this study, we used likelihood-
based parameter estimation methods, viz., maximum likelihood (ML) and restricted maximum likelihood
(REML). These methods can be used with Gaussian random �elds, and we normalized our data using
the Box-cox transformation. ML and REML are available as an R-packagegeoR[15] from the statistical
software R. Table 1 shows the estimated parameters and AIC values for each model. Hence, taking the
models with the lowest AIC yields the Mat�ern model, whose parameters, estimated using the REML
method, have the \best" �t.

Spatial prediction

In this study, we implemented an ordinary kriging based on intrinsically stationary and isotropy assump-
tions, which is often used as the kriging method, to predict each air dose rate value for 500 m� 500 m
meshes. The ordinary kriging predictor Z � (x0) of the value at x0 is given by the linear combination of
Z (x) evaluated at each samplex i ; i = 1 ; 2; :::; n.

Z � (x0) =
nX

i =1

! i Z (x i );
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� 0 � 1 � 2 k AIC
Exponential 0.09 2.28 39.96 - 215.2

ML Gaussian 0.21 1.82 14.49 - 222.4
Mat�ern 0.13 2.09 16.75 0.85 212.3
Exponential 0.09 8.44 150.80 - 207.4

REML Gaussian 0.20 2.02 14.86 - 216.4
Mat�ern 0.13 3.46 26.78 0.78 204.9

Table 1. Estimated parameters using ML or REML, and their respective AICs.

where ! i ; i = 1 ; 2; :::; n provides the unknown weights corresponding to the inuence of the variableZ (x).
We can obtain the dissimilarity value between the point x0 and the i th observed point by using the
estimated variogram model. Under the restriction conditions of

P n
i =1 ! i = 1, the computation of Z � (x0)

is conducted using the Lagrange multiplier. The predicted map is shown in the Figure5.

Figure 5. The predicted map of air dose rate obtained by ordinary kriging at January 10, 2013.

Similarly, we applied ordinary kriging to the data from January 11 to 19, 2013. In all cases, Mattern
model of REML was chosen as the suitable variogram function by the AIC criterion. The estimated
parameters of each day are shown in Table2. In addition, Figure 6 shows the predicted maps of air dose
rate for each day, computed using ordinary kriging.

4 Echelon spatial scan statistic

Spatial scan statistic based on normal model

The spatial scan statistic is a popular method used in disease surveillance for the detection of disease
clusters [8]. This statistical approach can detect clusters of any size located anywhere. It is commonly
used to evaluate the statistical signi�cance of temporal and geographical clusters without requiring any
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� 0 � 1 � 2 k
Jan. 11 0.13 3.47 26.72 0.79
Jan. 12 0.13 3.39 25.36 0.81
Jan. 13 0.12 3.39 26.13 0.79
Jan. 14 0.14 3.64 21.68 0.90
Jan. 15 0.14 3.72 20.74 0.89
Jan. 16 0.14 3.57 21.07 0.88
Jan. 17 0.14 3.47 20.56 0.89
Jan. 18 0.15 3.73 20.41 0.90
Jan. 19 0.15 3.55 19.66 0.90

Table 2. Estimated parameters for Mat�ern model based on REML each day.

Figure 6. Predicted map of air dose rate from January 11 to 19, 2013.

prior assumptions about their location, time period, or size. The precise model to be used depends on the
nature and the probability distribution of data [ 3, 6, 7, 9, 10]. In this study, we selected a scan statistic
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appropriate for continuous data with a normal distribution.
The spatial scan statistic is de�ned through a large number of overlapping windows calledZ . For

each window Z , a log likelihood ratio (LLR ) is calculated. Then, the test statistic is de�ned as the
maximum LLR over all windows. Here, x i ; i = 1 ; 2; :::; N is an observation value for the locationsi
at the �xed latitude and longitude. The notation nz is used to denote the number of observations
within window Z . xz =

P
i 2 Z x i denotes the sum of observed values within windowZ . Under the

null hypothesis, all observations come from the same distribution, with mean� and variance � 2. The
maximum likelihood estimates of mean and variance are then estimated as ^� 0 =

P
i x i =N and ^� 2

0 =P
i (x i � �̂ 0)2=N, respectively. We can therefore write the log likelihood function as

ln L 0 = � N ln
p

2� � N ln
q

^� 2
0 �

N
2

Under the alternative hypothesis, there is one cluster that has a larger mean than areas outside the
cluster. We need to obtain the maximum likelihood estimators that are speci�c to each windowZ in this
case. Means inside and outside the window are obtained by setting ^� z = xz=nz and �̂ zc = xzc =nzc =
(
P

i x i � xz )=(N � nz ), respectively. The maximum likelihood estimate for the common variance is de�ned
by �̂ 2

z = (
P

i 2 Z (x i � �̂ z ) +
P

i =2 Z (x i � �̂ zc ))=N. We can therefore express the log likelihood for window
Z by

ln L(Z ) = � N ln
p

2� � N ln
p

�̂ 2
z �

1
2�̂ 2

z

 
X

i 2 Z

(x i � �̂ z ) +
X

i =2 Z

(x i � �̂ zc )

!

= � N ln
p

2� � N ln
p

�̂ 2
z �

N
2

As the test statistic, we use the maximum log likelihood ratio.

LLR (Z ) = ln L(Z )=ln L 0

= N ln
p

�̂ 2 � N ln
p

�̂ 2
z

The window with the maximum likelihood ratio constitutes the most likely cluster (MLC), or the cluster
least likely to have occurred by chance. A P-value is estimated using Monte Carlo hypothesis testing by
generating a large set of random data by randomly permuting the observed value. With randomization
conducted in this way, the correct � level will be maintained even if the observations do not come from a
truly normal distribution. We next must �nd a window Z whoseLLR (Z ) is high. An important problem
is how to scan the study area e�ectively and e�ciently, because we cannot realistically calculateLLR (Z )
for all patterns of window Z consisting of spatially linked subsets ofi .

Echelon scanning method

Echelon analysis [11, 13] provides an objective description of regions using spatial structures based on
vertical intervals in each region. Regional data have real referenced valueshi within a spatial region
i 2 G; i = 1 ; 2; :::; m for an entire area G consisting of m regions. Then, the data are expressed in the
form of (i; h ). Figure 7 (left) shows an example of nine regions labeled A to I and their valuesh. This
regional data are divided into the same structured area, as shown in Figure7 (center). These parts are
called echelons. The �rst, second, third, and fourth echelons are peaks; the �fth echelon is a foundation
of peaks; and the sixth and seventh echelons are foundations of peaks and foundations, respectively. Each
region belongs to a speci�c echelon. For example, the �rst peak consists of regionf Ag and the third
peak consists of the regionsf H, Eg. Finally, the spatial structure of this regional data is provided by the
echelon dendrogram shown in Figure7 (right).

Each mesh assigned the predicted air dose rate has spatial and temporal information. To apply the
echelon technique to our mesh data, we needed to de�ne two kinds of spatial neighboring information.
The �rst involved geographically adjacent relationships. Here, we de�ned a mesh to have contiguity rela-
tionships with all upper and lower and right and left adjacent meshes: a so-called rook-type neighborhood.

COMPSTAT 2016 Proceedings



Fumio Ishioka and Koji Kurihara 93

Figure 7. Regional data (left), division to the same echelon (center), and echelon dendrogram
(right).

The second challenge was in de�ning the time series variation. Here, we assumed a three-dimensional
structure obtained by adding the axis of time on geographic two-dimensional data, which then de�ned a
continuous relationship over three days, in which each mesh connected the same mesh in the preceding
and following days. This is based on the idea that the state of one place is most a�ected by the preceding
or the following state of the same place. The echelon scanning process was performed using the following
steps.

1. Represent a topological hierarchy for spatial data by an echelon dendrogram.

2. Scan a region and add it to the windowZ , from the upper to the bottom echelons.

3. Consider the window Z with max Z LLR (Z ) as a cluster.

5 Results

Figure 8 shows the echelon dendrogram that describes the hierarchical structure of the predicted daily
mean air dose rate from January 10 to 19, 2013 in the study area. The MLC under the constraint of
presetting a maximum cluster size at 5,000 meshes is drawn on the dendrogram. There was a single
signi�cant space{time cluster with LLR (Z ) of 34; 235:01. To test for statistical signi�cance, 99 replica-
tions of Monte Carlo hypothesis testing were performed. This yielded a value ofp < 0:01. The detected
area has geographical and time information, and we can describe the maps of the MLC as in Figure
9. The cluster detected by our study can be considered from two perspectives. From the geographical
perspective, the locations identi�ed were not in around the NPS, but were in the direction of northwest
from the NPS. From the temporal perspective, the cluster had a decreasing number of cluster locations
as time advanced. In particular, it was greatly reduced after January 14. These changes might be due to
the inuence of weather conditions.

6 Conclusions

This study identi�ed a signi�cant space-time cluster of air radiation dose rates in the area of the highest
level of radiation contamination in the Fukushima Prefecture during the period from January 10 to 19,
2013. Before detecting the cluster, we attempted to use the spatial interpolation technique to increase
the amount of information that could be analyzed. In this study, we assumed the intrinsically stationary,
and performed coordinate transformation for the isotropic spatial processes. However, the around of
extremely high rate mesh might be estimated lower than actual rate as a possible inuence. About a
strict validation of the stationary in our situation needs more discussion.
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Figure 8. Echelon dendrogram for the daily mean of air dose rates from January 10 to 19, 2013
in the study area.

The echelon scan statistic enables detection of clusters having various shapes and high likelihood
ratios, because the scanning process is based on the core spatial structure of the data. Our method
considerably reduces the number of scanned windowsZ by converting the data to a simple tree structure.
It is therefore superior to other scanning methods when large amounts of data are to be handled. In
addition, with the appropriate adjacency information provided, we could also detect the time{space
cluster. In the future, we aim to apply this method to various environments or large amount data.
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Figure 9. Geographical location of simultaneous space{time cluster from January 10 to 19, 2013.
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Abstract. Very recently, a new degradation process, namely the transformed gamma (TG) process,
has been proposed in the literature to describe Markovian degradation processes whose increments over
disjoint intervals are not independent, so that the degradation growth over a future time interval can
depend both on the current age and the current state (degradation level) of the unit. This paper proposes
a Bayesian estimation approach for such a process, that is based on prior information relative to the sign
(positive or negative) of the correlation between the degradation increment and the current state or
age of the unit. Several di�erent prior distributions are then proposed, reecting the knowledge of the
analyst. A Markov Chain Monte Carlo technique, based on the adaptive Metropolis algorithm, is used
for estimating the TG parameters and some functions thereof, such as the residual reliability of a unit,
as well as for predicting future degradation growth. Finally, the proposed approach is applied to a real
dataset consisting of wear measures of the liners of the 8-cylinder engine which equips a cargo ship.

Keywords. Degradation process, Transformed gamma process, Bayesian estimation, degradation growth
prediction, Markov Chain Monte Carlo.

1 Introduction

A large body of literature has addressed the problem of developing stochastic process models able to
provide an e�ective description of real degradation phenomena. Very recently, a number of stochastic
processes have been proposed to describe degradation phenomena where the degradation increment over
a future time interval is no longer independent of the observed history, but can depend on the current
state of the unit (as well as on its current age), so that the degradation increments over disjoint time
intervals are not independent random variables [1], [2], [3] and [4].

Within these (Markovian) state-dependent degradation process models, the transformed gamma (TG)
process [4] seems to be very attractive due to its mathematical tractability. For example, unlike the
other Markovian state-dependent processes proposed in the literature, the conditional distribution of the
degradation growth under the TG process is available in closed form. In addition, since the TG process
can be viewed as a non-linear transformation of the gamma process [5], it constitutes a natural choice for
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modelling degradation phenomena when degradation growth takes place gradually over time in a sequence
of tiny increments. Thus, the TG process seems to be suitable to describe degradation phenomena caused
by continuous use, such as wear, chemical corrosion, fatigue, and so on.

Estimation procedures of the TG process parameters based on the maximum likelihood method have
been discussed in [4], while the Bayesian approach has been not yet considered. In this paper, in order
to �ll in this gap, a Bayesian procedure is proposed that allows prior information based on knowledge
of the physics of the observed degradation phenomenon to be introduced in the inferential procedure.
In this way, more accurate estimates of the model parameters and functions thereof can be achieved.
Moreover, the Bayesian approach allows interval estimates and predictions to be easily obtained, whereas
classical approaches, such as the maximum likelihood one, generally involve asymptotic approximation
of the distribution of the estimators. In particular, the prior information is formulated in terms of the
sign (positive or negative) of the correlation between the degradation growth in a future time interval
and the degradation level reached by the unit at the current age or the time required to reach the current
degradation level.

Posterior inference is made on the process parameters and on several functions thereof, such as
the residual reliability, by using Markov Chain Monte Carlo (MCMC) techniques. Prediction of the
degradation increment over a future time interval is also provided. Finally, the proposed procedure is
applied to a real dataset given in [6], that consists of the wear measures of the liners of the eight-cylinder
engine equipping a cargo ship of the Grimaldi Lines.

2 The transformed gamma process

Let � (t) be a non-negative, monotone increasing function of timet, hereinafter called \age function",
with � (0) = 0, and let g(w) be a non-negative, monotone increasing and di�erentiable function of the
degradation levelw, hereinafter called \state function", with g(0) = 0. An increasing degradation process
f W (t); t � 0g is said to be a TG process with age function� (t) and state function g(w) if it possesses
the following properties:

1. the degradation increments over disjoint time intervals are (possibly) not independent;

2. the degradation increment � W (t; t + � t) � W (t + � t) � W (t) over the time interval ( t; t + � t)
depends on the process history up tot through the current time t and the current state (degradation
level) wt = W (t), only, being independent on the past;

3. the (conditional) distribution of � W (t; t + � t) is given by:

f � W ( t;t +� t ) (� jwt ) = g0(wt + � )
g (wt ; wt + � ) � ( t;t +� t ) � 1

� [ � (t; t + � t)]
exp [� g (wt ; wt + � )] ; � > 0; (1)

where g0(wt + � ) is the derivative of the state function g(w) evaluated at wt + � , g (wt ; wt + � )
= g(wt + � ) � g (wt ), � (t; t + � t) = � (t + � t) � � (t), and �( �) is the complete gamma function.

If � (t) is linear with t, the (conditional) distribution of � W (t; t + � t) depends on the interval width
� t and not on the current aget, so that the TG process is said to be age-independent. On the other side,
if g(w) is linear with w, the distribution of � W (t; t + � t) does not depend on the current degradation
level wt , and the TG process reduces to a (state-independent) gamma process.

From (1), the probability density function (pdf) and the cumulative distribution function (Cdf) of
the degradation levelW (t) at the time t of a new (unused) unit are given, respectively, by

f W (t ) (w) = g0(w)
[g(w)] � ( t ) � 1

�[ � (t)]
exp [� g(w)] ; (2)

FW (t ) (w) =
IG[g(w); � (t)]

�[ � (t)]
; (3)
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where IG (y; s) is the (lower) incomplete gamma function.
Several functional forms for the age and state functions can be chosen, such as the power-law and the

exponential function suggested in [4] and [6]. Following [6], in this paper a power-law function is used
both for � (t) and for g(w):

� (t) = ( t=a)b and g(w) = ( w=� ) � : (4)

Under such formulation, the TG process becomes age-independent whenb = 1, and is state-independent
when � = 1. The mean and variance of the degradation levelW (t) are in closed form, and given by:

E f W (t)g = �
�

�
(t=a)b + 1=�

�

� [( t=a)b]
and V f W (t)g = � 2

 
�

�
(t=a)b + 2=�

�

� [( t=a)b]
�

� 2
�
(t=a)b + 1=�

�

� 2 [(t=a)b]

!

: (5)

The (conditional) residual reliability Rt (� jwt ), that is, the probability that, given the current degra-
dation level W (t) = wt , the level W (t + � ) reached at the future time t + � does not exceed a given
threshold level wmax , is given by:

Rt (� jwt ) = Pr f W (t + � ) � wmax jwt g = Pr f � W (t; t + � ) � wmax � wt jwt g

=
IG

n
(wmax =� ) � � (wt =� ) � ; [(t + � ) =a]b � (t=a)b

o

�
n

[(t + � ) =a]b � (t=a)b
o : (6)

From (3), since Prf W (t) � wg = Pr f T(w) � tg, the distribution of the age T(w) at which a given
degradation levelw is reached is given by:

f T (w) (t) = �
d
dt

IG [g(w); � (t)]
� [ � (t)]

= �
d
dt

IG
h
(w=� ) � ; (t=a)b

i

� [( t=a)b]
: (7)

By using arguments in [4], the pdf in (7) can be given in a more tractable form that does not involve
a numerical derivation:

f T (w) (t) =
b
a

�
t
a

� b� 1 1
� [( t=a)b]

n
IG

h
(w=� ) � ; (t=a)b

i �
 [(t=a)b] � ln[(w=� ) � ]

�

+
1X

k=0

(� 1)k (w=� ) � [( t=a )b + k ]

[(t=a)b + k]2 k!

)

; (8)

where  (�) denotes the digamma function. If w is set equal to the threshold valuewmax , then the pdf
(8) provides the distribution of the lifetime T = T (wmax ) of the unit.

It can be empirically showed that the behavior of the age and state function a�ects the correlation
between the degradation growth � W (t; t + � t) during the future time interval ( t; t + � t) and the degra-
dation level reached at the current age or the time required to reach the current degradation level. In
particular, if the state function is concave downwards, as occurs when the shape parameter� in (4) is
less than 1, the degradation increment is positively correlated to the degradation levelW (t) reached at
the current age t, given � t. It means that the larger the degradation W (t) reached at the aget, the more
rapidly the degradation grows in the future. On the contrary, if g(w) is convex downwards, � W (t; t + � t)
and W (t), given t and � t, are negatively correlated. As mentioned before, ifg(w) / w, the process is
state-independent and � W (t; t + � t) and W (t) are uncorrelated.

Likewise, if the age function is concave downwards, as occurs when the shape parameterb in (4) is
less than 1, the variables � W [T(w); T(w) + � t] and T(w), given w and � t, are negatively correlated,
where T(w) is the age at which the degradation levelw is reached. On the contrary, if � (t) is convex
downwards, � W [T(w); T(w) + � t] and T(w), given w and � t, are positively correlated. Finally, if
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